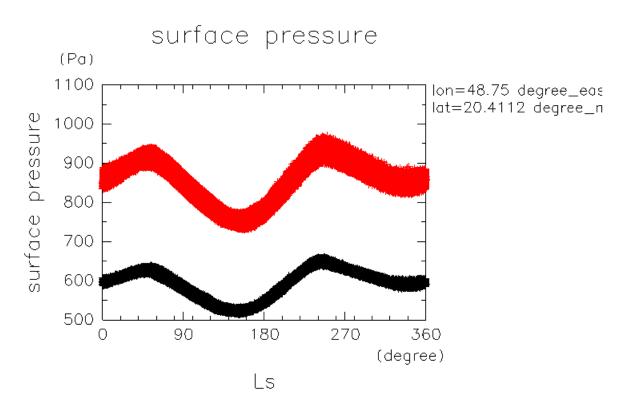

気圧補正について 2013/12/05 - 1

まとめ

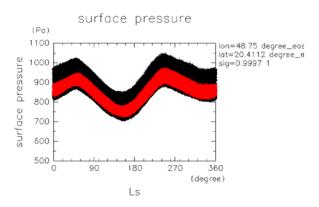
- dcpam の計算結果と観測された地表面気圧を使って調べたところ, 当面, 地表面気圧は下のように補正すると良いと考えられる.
 - 60 Pa 減少させる
 - モデル大気の質量の不確定性の補正
 - ただし, 現状では, Viking と MPF の結果を同時に一つの値で綺麗に合わせることはできていない.
 - ダスト分布への依存性もあるかもしれない.
 - σ=0.9 付近の温度を使って高度補正を行う
 - モデルの標高と着陸地点の高度を補正
 - 地表面に近すぎる点の温度を使うと日変化を過大評価
 - 今回確認した範囲では,少なくとも σ<0.95 の温度であればあまり変わらないと考えられる.
 - σ=0.9 とした理由は, LMD 研究者の経験による.


高度補正概要

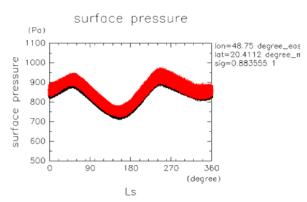
- 課題
 - どの高さの温度を使うか?
- dcpam の結果を使って確認
 - 2 地点 (site1, site2) の地表面気圧を比較
 - site 1: (50E, 20N), zs = 286.7 m
 - site 2: (200E, 20N), zs = -3791.5 m
 - 備考
 - 同じ緯度

dcpam T31 で使っている地形

補正前 Ps

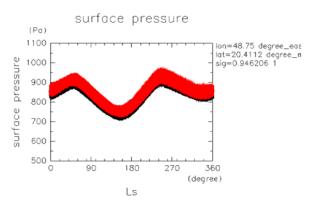


黒: site1, 赤: site2

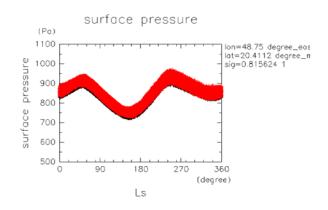

補正後 Ps

site 1の Psを site 2の高度に補正

σ=0.9997(最下層)の温度を使用

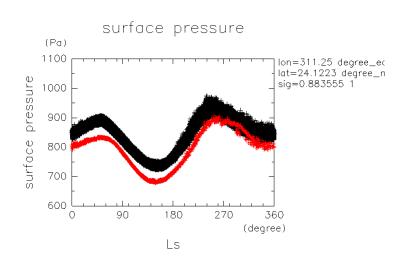


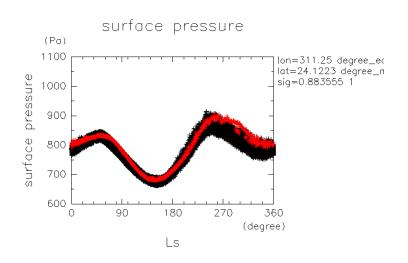
σ=0.88 の温度を使用



黒: site1, 赤: site2

σ=0.95 の温度を使用

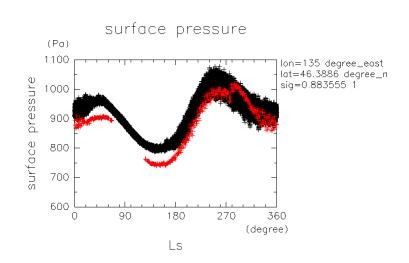

σ=0.81 の温度を使用

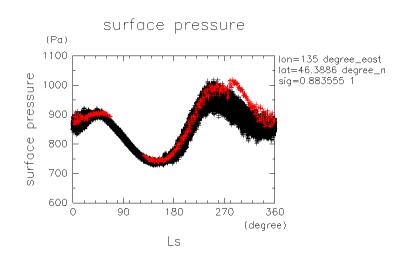


大気総量補正概要

- 課題
 - モデル大気全量をどの程度ように補正するか?
 - 方針は,下駄をはかせる.つまり下駄の大きさが問題.
- dcpam の結果と観測結果の比較
 - 使用する観測データ
 - Viking lander 1 (VL1)
 - Viking lander 2 (VL2)
 - Mars Pathfinder (MPF)
 - 備考
 - 高度補正には σ=0.88 の温度を使用
 - ただし, 高度差は 20-40 m 程度しかない
 - dcpam の値は 1/24 日ごとデータ
 - VL1, VL2 の値は日平均値
 - MPF の値は 1/48 日ごとデータ(後半は欠損も多いことに注意)

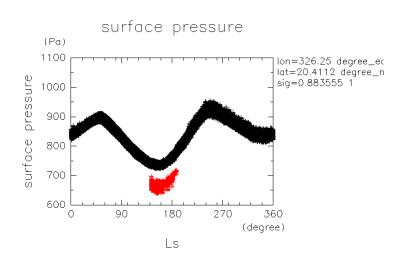
大気量補正結果 VL1

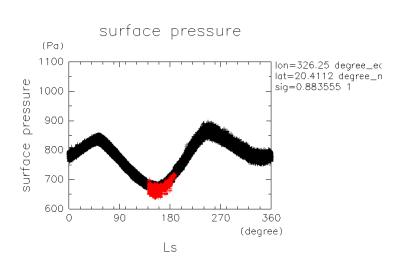




高度補正済, 大気量補正<mark>前</mark>

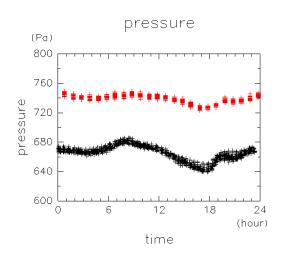
高度補正済, 大気量補正<mark>後 (-60 Pa)</mark>

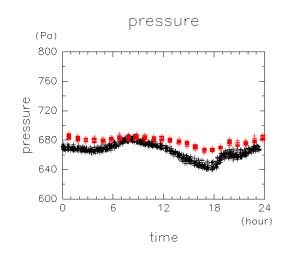

大気量補正結果 VL2



高度補正済, 大気量補正<mark>前</mark> 高度補正済, 大気量補正<mark>後 (-60 Pa)</mark>

大気量補正結果 MPF





高度補正済, 大気量補正<mark>前</mark> 高度補正済, 大気量補正<mark>後 (-60 Pa)</mark>

NOTE: Actually, reduction of 75 Pa produces better surface pressure.

大気量補正結果 MPF (diurnal variation; Ls=145-160)

高度補正済, 大気量補正<mark>前</mark> 高度補正済, 大気量補正<mark>後 (-60 Pa)</mark>

NOTE:

Actually, reduction of 75 Pa produces better surface pressure. Whatever the reduction amount is tuned, amplitude of diurnal variation is small in the model.