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Motivation: copepods and whales

Right whales congregate in Cape Cod Bay during the spring and feed on the zooplank-
ton (primarily Calanus copepods) blooming at that time. Most years, the copepods form
very intense patches along tidal fronts off Provincetown or in the Great South Channel,
and the whales cruise along these fronts.

Graphics: map Cape Cod Bay Gulf of Maine [Manning, et al, 2009]
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Copepods: Calanus Finmarchicus

• Life History: (Tarrant et al., 2008; Durbin et al., 1997)
- Pre-adults overwinter in “diapause”
- Molt into adults and mate, hatch and molt through 13 stages
- One or two generations per year
- Eggs and nauplii stages are an important source of food for cod and haddock
(Kane, 1984)

- Later copepodite stages are the primary prey of right whales (Wishner et al.,
1995) Graphics: Prey species calanus [CCS] calanus [JHU, Lab Exp

Fluid Dyn]

• Swimming ability: (Buchanan et al., 1982; Epstein and Beardsley, 2001; Genin et
al., 2005; Lenz et al., 2004)

- Typical: 0.1-10cm/s
- Escape: Up to 80cm/s

• Patchiness: (Wishner et al., 1995; Beardsley et al., 1996; Baumgartner and Mate,
2003, Epstein, 1995)

- SCOPEX study in the Great South Channel suggested densest patches coincide
with salinity front.

- Densest patches order 100-1000m across, 1-10m vertical, hours to days(?)
- Peak densities 103 to 104 copepods/m3. 10-1000 times background

Whales:

Copepod aggregations are a food source for many species, including the endangered
right whales (Eubalena glacialis), which return to the southwestern GOM every spring to
forage.

Graphics: Predator species right whale underwater scale
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Outline:

• Vertical swimming and physics

• Horizontal convergence

• Social behavior

• Turbulent stirring

• Combined effects

Vertical swimming and physics

• Eulerian: b(x, z, t)
∂

∂t
b+∇i(Uib−Kij∇jb) = 0

U and Kij include both fluid motions, directed swimming, and drifts associated with
variations in random motion.

• Concentration can only increase if biological velocities in U are convergent.

• Dominant directed motion is vertical swimming ws(z, t)

∂

∂t
b+∇ · (ub−K∇b) + ∂

∂z
([w + ws]b−Kv

∂

∂z
b) = 0

(with u and ∇ being horizontal).

• strong swimming and randomness with preferred depth

∂

∂z
(wsb−Kv

∂

∂z
b) ≃ 0

⇒ b = b′(x, t)F (z) with
∂

∂z
lnF = ws/Kv

• Depth integrated equation (
∫

dz F ≡ 1)

∂

∂t
b′ +∇ · (ũb′ − K̃∇b′) = 0 , ũ =

∫

dz Fu , K̃ =

∫

dz FK

Velocities ũ are divergent and have an associated stretching s

s = −∇ · ũ =

∫

F
∂w

∂z
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If F is very sharply peaked, the velocities and stretching are just the horizontal flows
and ∂w

∂z
at the preferred depth; in any case, we’ll drop the tilde and prime and use

∂

∂t
b+∇ · (ub−K∇b) = 0

or
∂

∂t
b+ u · ∇b−∇ ·K∇b = sb

Later the social movement will be included in u. Graphics: Lagrangian D/Dt

ln b = s along-track integrals

Steady state patches

F = ub−K∇b = ẑ×∇χ

Gain insight from K = const. and u = −∇φ

∇ ln b = − 1

K
∇φ

b = b0 exp(−φ/K)

Linear geometry

1) Pure strain u = −U(x/L), φ = 1
2UL(x/L)

2

2) Localized front u = U0 − U tanh(x/L), φ = −U0x+ UL ln[cosh(x/L)]
2a) U0 > U then ub−K∇b = (U0 − U)b−∞ (χ 6= 0)
3) Localized velocities u = −U(x/L) exp(−x2/2L2), φ = −UL exp(−x2/2L2) Graph-

ics: one d purestrain localfront u0=0.2 u0=0.5 u0=1.2 localvel

Steady solutions exist with b → 0 for cases 1, 2 but are proportional to the
upstream value for 2a, 3. U0 = U does not have steady solutions (diffusively
growing region). The amplitude depends on the Pèclet number of the convergent
flow φ/K.

Graphics: t 1/2 development max
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2D steady

Decompose the velocities
u = uψ −∇φ

There is a solution b = b(φ)

∇ ln b = − 1

K(φ)
∇φ

if K, φ, and ψ contours are parallel.
Ekman transport from bottom friction or eddy-wind effect (stress related to W − u)

indeed has the divergent flow perpendicular to the rotational flow. For a bottom boundary
layer, linear Ekman theory gives φ ≃ 1

2
ψ.

Time dependence and spatial inhomogeneity

Time scales:

• Homogenization along ψ lines

• Initial growth (exponential)

• linear growth as b fluxes in

• equilibration when outward diffusive flux compensates Graphics: example swirling

flow maximum

Buoyant plume

Buoyant fresh plumes from snowmelt run down the coast, enhancing the normal
coastal jet. Can they “snowplow” up enough copepods?

Interior plume-relative circulation may be either sign.
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Physics would need to act on long times, gather copepods from large areas,

and have small turbulent losses
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Social behavior

Desirable features of the social grouping model we shall consider include:
1) Spontaneous break-out of patchiness. Not surprisingly, this tends to occur at the

sensing scale.
2) Shear resistant. Patches should be maintained under reasonable shear or strain in the

fluid flow.
3) Sticky. If two patches are brought near enough by the eddies or other motions, they

should coalesce to form a larger patch which can hold together.
4) Potential for large-scale patches. If patches begin to coagulate, but then break apart

again, dense aggregations on a scale much bigger than the sensing scale are unlikely.

For the nth organism,

dX(n) = V(n)dt

dV(n) = −r(V(n) − u− ub)dt+ dW

ub[b]: preferred swimming velocity
dW: a random increment 〈dW〉 = 0, 〈dWidWj〉 = 2Kbr

2 dt δij
Kb[b]: biological diffusivity associated with random swimming

Translates to

∂

∂t
b+∇ ·

[

ub+ ubb−
1

r
∇(rKb)b− (κ+Kb)∇b

]

= 0

• Kb = const.

• ub = −∇φb
- Local density: β(x) =

∫∫

dx′ w(x− x′)b(x′)

- Weighting function w(r) = 3
πa2

(1− r2/a2)2 (r ≤ a)
- Potential: φb = −Uaβ/(1 + β)
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Stability of uniform states

For b = b+A(t) exp(ık · x), we have

∂

∂t
A = |k|2(bΦ(|k|)−Kb)A

with

Φ(|k|) = Ua

(1 + b)2

∫∫

dx′w(|x′|) exp(ık · x)

implying instability for

Pe
b

(1 + b)2
> 1

with Pe = Ua/Kb the Pèclet number for the organism’s taxis velocity. Graphics:

critical curves linear log example

Note: both low and high densities are stable; thus a large, dense patch will

not break up by the behavioral processes.

Patch sizes

b = b0 exp(−φb/Kb) = b0 exp

(

Pe
β

1 + β

)

Iteration: b→ β → exp(Peβ/[1 + β])→ b0[normalization]→ b Graphics: patch size

max b area

Shear:

u = Us cos(k0y) Graphics: shear merger example
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More complex flows

Unlike the purely physical problems where φ can become large and positive, and
exp(−φ/K) can decay towards zero, the social model has φb always negative so that in
steady state b ≥ b0 > 0. b0 is related to the far-field value:

b∞ = b0 exp

(

Pe
b∞

1 + b∞

)

b0 ≃ b∞/(1 + Pe b∞)

b ∼ b∞ + Ce−kx

• Each patch has an exponentially small field which attracts other patches.

• But it will also tunnel out along axes of divergence

phi, iter = 650
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Fig. 20: The potential φphys + φb; the highest values are at the north and south,
and it gets more negative to the east and west as shown on the east-west cross-
section.

Stirring

ψ =
Us

k
√
7

[

cos(kx+
θx1
3

) cos(ky +
θy1
3

)

+ cos(2kx+ θx2) cos(3ky + θy2) + cos(3kx+ θx3) cos(2ky + θy3)
]

k = 2π/W , θxj and θyj : independent random walks with δθ = 0.02 for a time step of 2−9.
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Graphics: stirring stirring plus social

All together now...

Central point

1) Weak convergence and swirl

φ = −0.1ψ , ψ = UvLv exp(−
1

2
[x/Lv]

2 − 1

2
[y/Lv]

2)

2) Social grouping

φ← φ+ φb , φb = −Ua
β

1 + β
, β =

∫∫

dx′w(x− x′)b(x′)

3) Stirring
ψ ← −Ufy + ψstir , φ← φ− 0.1ψstir

Graphics: center physical social max b

Front

1) Frontal flow and convergence

v = V0 sech
2(x/Lv) , φ = −0.1V0Lvsech2(x/Lv)

3) Stirring only in ψ, not φ.
Graphics: front social fraction in front
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Summary

• Physical convergence is probably not strong enough, extensive enough, steady enough
to enhance the concentration that dramatically

• Social behavior can produce large densities but on small scales; however some forms
of behavior allow patches to merge into larger, stable aggregations.

• Stirring feeds small patches into the region of convergence where they can merge with
the larger aggregations and, to some degree, resist detrainment

• The resulting dense aggregations are large compared with the se4nsing scale but small
compared to the convergent regions (part of making b much larger than physics alone).

• In the ocean, this is probably involves a whole chain of merging processes, from in-
dividuals to social patches, then groups combining to larger groups, ... while the
convergence acts overall.
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