

Torsional Alfvén waves in a dipolar magnetic field: experiments and simulations

Z. Tigrine ^{1,2}, **H-C. Nataf**¹, N. Schaeffer ¹ P. Cardin ¹ and F. Plunian ¹

¹ Univ Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France

² Univ des Sciences et de la Technologie Houari Boumediene USTHB, Algiers, Algeria

FDEPS Research Seminar, Kyoto

The liquid sodium DTS experiment

- The goals of DTS:
 - explore the magnetostrophic regime, in which the Coriolis force and the Lorentz force are comparable.
 - > Pave the way for a spherical Couette dynamo experiment.
- First measurements in 2005.
- DTS- Ω version in 2015.

The DTS set-up

Physical properties of liquid sodium

Property	symbol	Value	Unit
Density	ρ	930	kg.m ⁻³
Electrical conductivity	σ	9.10 ⁶	$\Omega^{-1} m^{-1}$
Kinematic viscosity	V	6.5. 10 ⁻⁷	m²/s
Magnetic Diffusivity	η	8.84.10-2	m²/s
Temperature	Т	130	°C

Physical parameters of DTS

Property	symbol	Value	Unit
Outer sphere radius	r _o	210	mm
Inner sphere radius	r _i	74	mm
Outer sphere maximum rotation rate	f_o	15	Hz
Inner sphere maximum rotation rate	f_i	30	Hz
B(r=r _o , θ=π/2)	B _o	8	mT
B(r=r _i , θ=π/2)	B _i	173	mT

Dimensionless numbers for $f_o = 15$ Hz, $\Delta f = 30$ Hz

Number	expression	value	Earth core
Magnetic Prandtl	$ u / \eta$	7.4 x 10 -6	~10-5
Ekman	v / Ωr_o^2	1.6 x 10 ⁻⁷	~10 ⁻¹⁵
Reynolds	$\Delta \Omega r_o^2 / v$	1.3 x 10 ⁷	
Magnetic Reynolds	$\Delta \Omega ~ r_{_{o}}^{2}$ / η	94	~10 ³

Measurement techniques

- Magnetic field at the surface
- Magnetic field in a sleeve inside the fluid
- Electric potentials at the surface
- Ultrasound Doppler Velocimetry

Main results

(a)

- Mean state:
 - Modified Taylor state
 - Induction peak at Ro_{eff} ~ -1
 - Super-rotation
 - \succ Λ ~ 1 frontier

Main results

- Mean state:
 - Induction and diffusion: using the DTS experiment as a Navier-Stokes solver!

Magnetic energy spectrum, run 2 and 3, 31-01-06

Main results

- Fluctuations, diffusion, and mean flow:
 - Turbulence *reduces* magnetic diffusivity

Torsional Alfvén waves in a dipolar magnetic field: experiments and simulations

Z. Tigrine ^{1,2}, **H-C. Nataf**¹, N. Schaeffer ¹ P. Cardin ¹ and F. Plunian ¹

¹ Univ Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France

² Univ des Sciences et de la Technologie Houari Boumediene USTHB, Algiers, Algeria

FDEPS Research Seminar, Kyoto

Torsional Alfvén waves in the Earth's core

- Alfvén waves are strongly modified by the Coriolis force in planetary cores:
 - Alfvén waves that violate the Proudman-Taylor constraint are inhibited.
 - Geostrophic Alfvén waves, which are called torsional Alfvén waves, are favoured.

Torsional Alfvén waves in the Earth's core

Alfvén time:
$$\tau_A = \frac{r_o}{V_A} = \frac{r_o \sqrt{\mu_0 \rho}}{B} \sim 4$$
 years

Torsional Alfvén waves in the Laboratory...

Nataf et al, 2008 Brito et al, 2011 Cabanes et al, 2014

Torsional Alfvén waves in the Laboratory...

Wave fronts of *ideal* Alfvén waves in $DTS\Omega$

Wave fronts of *ideal* Alfvén waves in $DTS\Omega$

Magnetic diffusion

• Alfvén waves are very difficult to study in the lab because of the large magnetic diffusivity of liquid metals.

Magnetic diffusion time: $au_{\eta} = rac{r_o^2}{\eta} = 500 \ \mathrm{ms}$

Lundquist number

Dimensionless numbers for f_o = 15 Hz

Number	expression	Inner sphere	Outer sphere	Earth core
Lehnert	τ_{Ω}/τ_A	0.25	0.01	~10-4
Lundquist	$ au_\eta/ au_A$	12	0.53	~10 ⁴

- Azimuthal magnetic field in a sleeve
- Surface electric potential

 V_{θ}

 Azimuthal fluid velocity by ultrasound Doppler

Jerks of all sizes

the wave comes! the first 80 ms (0.16 magnetic diffusion time)

The signature of rotation: the first 500 ms (1 magnetic diffusion time)

The mystery of the negative magnetic swing...

November 30, 2018

FDEPS Research Se

The Alfvén wave from the other side...

November 30, 2018

FDEPS Research Semin

A hint on fluid velocities from surface electric potentials...

 $U_{\varphi} = \frac{1}{B_r} \frac{\Delta V_{\theta}}{r_o \Delta \theta}$

More tricky: azimuthal velocity from UDV

More Earth-like values:

Lu_i=12 000, Le_o=10⁻³ E=2x10⁻⁷, Ro=2x10⁻² (but Pm=0.1)

Take-home message

- We have triggered and observed torsional Alfvén waves in our $DTS\Omega$ laboratory experiment.
- Rotation, magnetic field geometry and diffusion strongly alter ideal Alfvén wave properties.
- XSHELLS numerical simulations help deciphering their properties, and show the triggering of **inertial waves**.
- Electric potentials and subtle differences in the magnetic signature reveal the formation of **geostrophic motions**.
- We obtained the first direct measurements of Alfvén wave fluid velocity from ultrasound Doppler.

Thank you

$DTS\Omega$ jerk time function

