
been observed but its existence has been speculated [18].
This speculation is supported by the recent discovery of
two localized exact solutions in PCF by Schneider, Marinc,
and Eckhardt [19] which qualitatively resemble localized
states in the SHE.

The aim of this Letter is to elucidate the origin of these
localized solutions in PCF.We show that the Navier-Stokes
equations in this geometry indeed exhibit homoclinic snak-
ing, giving rise to localized counterparts of well-known
spatially periodic equilibria.

In PCF the velocity field uðx; tÞ ¼ ½u; v; w%ðx; y; z; tÞ
evolves under the incompressible Navier-Stokes equations,

@u

@t
þ u 'ru ¼ (rpþ 1

Re
r2u; r ' u ¼ 0; (1)

in the domain ! ¼ Lx ) Ly ) Lz where x, y, z are the
streamwise, wall-normal, and spanwise directions, respec-
tively. The boundary conditions are periodic in x and z and
no-slip at the walls, uðy ¼ *1Þ ¼ *x̂. The Reynolds
number is Re ¼ Uh=!, where U is half the relative veloc-
ity of the walls, h half the wall separation, and ! the
kinematic viscosity. We treat Re as the control parameter
and use as a solution measure the dissipation rate D ¼
ðLxLyLzÞ(1

R
!ðjr) uj2Þd!. The laminar profile has

D ¼ 1 while solutions such as those shown in Fig. 1
have D> 1.

Figure 1 shows two exact solutions of (1) at Re ¼ 400
and ! ¼ 4") 2) 16", originally identified in [19] for
! ¼ 4") 2) 8". The solutions are localized in the

spanwise z direction and consist of two to three promi-
nent pairs of alternating wavy roll-streak structures em-
bedded in a laminar background flow. Figures 1(a) and 1(b)
are a traveling-wave solution uTW of (1) satisfying
½u; v; w%ðx; y; z; tÞ ¼ ½u; v; w%ðx( cxt; y; z; 0Þ, where cx ¼
0:028 is the streamwise wave speed. Figures 1(c) and 1(d)
are a stationary, time-independent solution uEQ. The
equilibrium uEQ is symmetric under inversion
½u; v; w%ðx; y; z; tÞ ¼ ½(u;(v;(w%ð(x;(y;(z; tÞ, and
the traveling-wave uTW has a shift-reflect symmetry,
½u; v; w%ðx; y; z; tÞ ¼ ½u; v;(w%ðxþ Lx=2; y;(z; tÞ. These
symmetries ensure that neither uEQ nor uTW drifts in the
localization direction z.
To continue these solutions in Re, we combine a

Newton-Krylov hookstep algorithm [20] with quadratic
extrapolation in pseudoarclength along the solution
branch. The Navier-Stokes equations are discretized with
a Fourier-Chebyshev-tau scheme in primitive variables and
3rd-order semi-implicit backwards differentiation time
stepping. Bifurcations along the solution branches are
characterized by linearized eigenvalues computed with
Arnoldi iteration. The computations were performed with
32) 33) 256 collocation points and 2=3-style dealiasing,
resulting in approximately 2) 105 free variables, and
validated by recomputing with ð3=2Þ3 more grid points at
a number of locations along each solution curve [21].
The bifurcation diagram in Fig. 2 shows the uTW and

uEQ solutions from Fig. 1 under continuation in Reynolds
number. As Re decreases below 180, the solution branches
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|
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z

FIG. 1 (color online). Localized traveling-wave uTW (a),(b)
and equilibrium uEQ (c),(d) solutions of plane Couette flow at
Re ¼ 400, from [19]. The velocity fields are shown in the y ¼ 0
midplane in (a),(c), with arrows indicating in-plane velocity and
the color scale indicating streamwise velocity u: dark, light, dark
(blue, green, red) correspond to u ¼ (1, 0, þ1. The x-averaged
streamwise velocity is shown in (b),(d), with y expanded by a
factor of 3.
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FIG. 2 (color online). Snaking of the localized uTW, uEQ

solutions of plane Couette flow in (Re, D) plane. The spatially
periodic Nagata solution uP is shown as well; the uTW solution
connects with it near (131, 1.75). Velocity fields of the localized
solutions at the saddle-node bifurcations labeled a; b; c; d are
shown in Fig. 3. The rung branches are shown with solid lines
connecting the uEQ and uTW in the snaking region; velocity
fields for the points marked #, $, % are shown in Fig. 4. Open
dots on the uTW traveling-wave branch mark points at which the
wave speed passes through zero.
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Figure 14. The bifurcation diagram of the homoclinic starting at P = 2, for nonlinearity f (u) = u−u3+3/10 u5.

There is a strong resemblance between this evolution and the form of the solutions that
are found along the bifurcation diagram uncovered in Section 2, for example Figure 5. In
Figure 14 we draw a bifurcation diagram for the nonlinearity f2. Although the two figures
are similar in appearance, there is a significant difference. In Figure 5 both solution curves
consist of even solutions; for the nonlinearity f2, with the additional symmetry u "→ −u,
these two sets of solutions are identical (up to a reflection u "→ −u) and we draw them as one
curve in Figure 14 (continuous line). Because of the additional symmetry, there is also a new
reversibility in the problem:

R : (u, u′′) → (−u,−u′′) and x → −x,

(compare with Equation (3)). This leads to a second curve of solutions, bifurcating from
P = 2, which are odd (broken line). Further numerical results have found that the bifurc-
ation sequence for f2 is the qualitatively similar to that for f1 with the equivalent of the kink
transition at b = 2/9 corresponding to α = 3/16. The degenerate Hamiltonian Hopf which
occurs for f1 at b = 38/27 has no analogue for f2 other than formally as α → ∞.
We believe (but have as yet no proof) that the minimizers of Equation (16) all lie on the

bifurcation diagram in Figure 14. Every horizontal line in this figure intersects the diagram
at least twice, and for large values of λ, by the sloping nature of the curves, more than twice.
The oscillations in the graph appear to be centred about a mean value P which is close to the
Maxwell load which will be described and computed in the next section. At every value of
λ there are therefore several candidates for the global minimizer. In the following section we
first explore global minimization issues via a simplified caricature, before investigating more
closely the global minimizer for the strut model and its relation to the above diagram.

4. Maxwell Criterion and Global Stability

Let us now turn to the question of which solutions under conditions of controlled end-
shortening may be stable. For an environment rich with underlying disturbance, interest
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Figure 9: Bifurcation diagram for both the ⇥10⇤- and ⇥11⇤-hexagon fronts with Ā = 1, ⇥2 = 0.1.

To describe di�erent directions and interfaces on the hexagon lattice we use the Bravais-Miller index notation;

see [29]. On a hexagonal lattice there are two principal directions �10⇥- and �11⇥-directions, that are at ⇥/3

radians apart.

Setting Ā = 1, �2 = 0.1, we show the bifurcation diagram for both the principal �10⇥- and �11⇥-hexagon fronts

in Figure 9. Here we observe the same type of snaking behaviour seen in the Swift-Hohenberg equation [29]

where the �10⇥-front (label (1) in Figure 9) snakes over a larger region of parameter space than the �10⇥-front

(label (2) in Figure 9). As one proceeds up the snake, entire rows of hexagon cells are added to both ends of

the interface. We also expect there to be almost hexagon fronts where single cells are grown along the edge

of the interface; see Lloyd et al. [29, Figure 21].
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Figure 10: Hexagon ⇥10⇤ front isolas with Ā = 1, ⇥2 = 0.04. The labelled solutions are for the solid isola branch.The

domain covering hexagon fold occurs at � = �0.092 while the radial spot fold occurs at � = �0.103 and lines up with

the folds of the ⇥10⇤ fronts.

As we decrease �, we find that the bifurcation diagram is made up of isolas of hexagon fronts that go beyond

the saddle-node point for the domain covering hexagons; see Figure 10. These parameter values are the same

as those used by Short et al. [38, Figure 7]. As one transverses the isolas, we see that the localised hexagon

pattern passes to a multi-pulse state involving the hexagon cells; see panel (2) Figure 10. In particular, we

see that the left most folds of the �10⇥-fronts occur at the fold of the radial spot strongly suggesting that the

localised structure is made-up of radial spots. This explains why the fronts in Figure 10 can exist beyond

the fold of domain covering hexagons. However, it is clear that near the bottom right folds, the interior of

the front does look like domain covering hexagons. We also note that decay to the background state changes

from oscillatory to monotonic as one transverses the bifurcation diagram. This change in the type of decay
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E0 at fixed !!"1.2, it can be seen in Fig. 2 that cavity
soliton branches bifurcate subcritically at the modulational
instability threshold.
The existence of multipeaked CS structures is shown in

Fig. 2, in which their integral (" !A! dx) is plotted as a func-
tion of !E0!2. CS exist on two distinct yet similar branches
which correspond to structures with, respectively, odd and
even numbers of peaks. Both bifurcate from the homoge-
neous state at the point of modulational instability. Each
branch, although continuous, is composed of numerous posi-
tive slope #upper$ and negative slope #lower$ sections, which
we will denote by % and L superscripts, respectively. We also
specify the ‘‘number of peaks’’ #N$ as the number which

have amplitude at least equivalent to that of the lower-branch
solitary cavity soliton CS1

L at given input parameters. A se-
quence of these solutions is presented in Fig. 3. Note that the
N peaks are ‘‘close packed.’’ As might be guessed, there are
numerous other branches corresponding to structures with at
least one ‘‘gap’’ between adjacent large-amplitude peaks. If
we denote such a peak by ‘‘1,’’ and a minimal ‘‘gap’’ by ‘‘0,’’
our close-packed CS structures are all of type
‘‘ . . . .00011 . . . .111000 . . . . ,’’ which excludes e.g.
‘‘ . . . .0001101000 . . . . .’’ We will not examine such ‘‘open
structures’’ in detail, although we note that their existence
and stability is important in connection with the use of CS
arrays as pixel or memory arrays &7,22,36'.
As N increases, the solutions get broader, and so are even-

tually limited by the computational domain. In the absence
of such constraints, they become very similar to the roll pat-
terns described in Ref. &1'. Since a continuum of patterns of
different wave vector are stable in this parameter region, the
issue of the limiting peak separation of the multipeaked CS
is an interesting question. Another issue arises when we con-
sider that additional peaks do not have to be added sym-
metrically. By adding peaks on only one side one limits to
‘‘ . . . .00000111111 . . . . ,’’ which is not a roll pattern, but
coexistent roll and homogeneous patterns, with a front at the
border between them. These issues will be explored below.
Turning now to the dynamical properties of these CS so-

lutions, we have tested their stability by diagonalizing their
Jacobian, using the numerical methods mentioned above.
Discounting the neutral mode #see below$ possessed by all
CS solutions, the stability results are rather simple, in that all
positive-slope branches in Fig. 2 are stable, and all negative-
slope branches unstable. More precisely, all nonzero eigen-
values of the Jacobian of a positive-slope N-peak CS solution
are negative, so that it is an attractor, self-organizing from
any sufficiently-similar structure into the unique #at given
parameters$ CS solution on its branch.
All negative-slope CS are unstable, they in fact have only

FIG. 2. Integral of one-dimensional CS structures against the
intracavity field !E0!2. Solid, dotted, and dashed lines, respectively,
denote: stable CSN

% , unstable CSodd
L , and unstable CSeven

L solutions.
Parameters are !!"1.2 and C!5.4.

FIG. 3. Sequences of profiles for odd #left$ and even #right$ CS branches shown in Fig. 2. Dash-dotted, solid, and dashed lines correspond
to solutions at !E0!2!1.22, !E0!2!1.33, and !E0!2!1.44. Other parameters are !!"1.2 and C!5.4.
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Fig. 5. Mixed patterns predicted by the Gilad et al. model. Shown are numerical solutions of the model equations in bistability ranges of bare soil and spots (a), spots and
stripes (b), stripes and gaps (c) and gaps and uniform vegetation (d). Darker gray shades denote higher biomass.
From Kletter et al. (2011).

Fig. 6. Mixed patterns in nature: an isolated shrub patch in the northern Negev, Israel (A), mixture of spots and stripes of woody vegetation in Niger (B), mixture of stripes
and  gaps of woody vegetation in Niger (C), and isolated gaps in the pro-Namib zone of the west coast of southern Africa (D).
From  Rietkerk et al. (2002) (B and C) and Tlidi et al. (2008) (D).
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Fig. 7. Homoclinic snaking in the Swift–Hohenberg model. A bifurcation diagram showing intermediate solutions in a bistability range of uniform, u = 0, and pattern states
u  = up (a). The intermediate solutions describe localized structures with even (b) and odd (c) numbers of humps. Thick (thin) lines denote stable (unstable) solutions. The
parameter range rp1 < r < rp2 is called the homoclinic snaking range.
Courtesy of John Burke.

can form a variety of irregular stable patterns (Meron et al., 2004)
as Fig. 5 illustrates. Fig. 6 shows similar types of mixed patterns in
nature.

The mathematical theory of spatially mixed patterns in bistable
systems is far from being complete. However, significant progress
has been made recently in the case of bistability of uniform and spa-
tially periodic states. Fig. 7 shows a bifurcation diagram for a simple
pattern-formation model, the Swift–Hohenberg equation,2 that has
a bistability range of a uniform zero state and a periodic pattern.

2 The Swift–Hohenberg equation reads ut = ru + bu2 − u3 − (∂2
x + k2

0)2
u, where r,

b  and k0 are parameters. It can be regarded as the simplest model that captures a

Apart of the zero solution and the periodic solution there are many
intermediate solutions representing spatial mixtures thereof, some
of them are shown in the figure (the blue lines). (For interpretation
of the references to color in the text, the reader is referred to the web
version of the article.) They correspond to localized structures con-
sisting of confined domains of the periodic pattern in a background
of the zero state. There are two  families of such localized solutions,
one with an even number of humps and one with an odd number
of humps. The solution families “snake” upward, giving rise to a

stationary non-uniform instability. In this model the instability destabilizes the zero
state, u = 0 to a stationary periodic pattern with wave number k0.

(a) Plane Couette flow (b) Cellular buckling

(c) Crime hotspots (d) Optical cavity solitons (e) Vegetation patches

Figure 1: Examples of bifurcation diagrams corresponding to widely disparate physical

systems with similar underlying mathematical structure. Figures are reproduced from

published works as follows: (a) plane Couette flow [8]; (b) cellular buckling [2]; (c) crime

hotspots [3]; (d) optical cavity solitons [6]; (e) vegetation patterns [7].

Uncovering the Patterns Behind Patterns

Project description: In this project we will explore localized patterns on the plane.

Such patterns appear in a wide variety of physical contexts, which include – but are not

limited to! – fluid flows, crime hot spots, buckling problems, vegetation growth and optical

systems. Bifurcation diagrams for widely disparate systems have proved to be remarkably

similar; see Figure 1.

Various types of patterns which are periodic in one direction and localized in the other,

including those termed “rolls”, “spots and stripes”, and “squares,” have been investigated

(see, for example, [1], and refer to Figure 2 for visualizations of particular patterns). We
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Figure 20. The left and right panels contain isolas of localized square patterns for ν = 2. In the left panel,
stable and unstable solutions along the isola are indicated by solid and dashed curves, respectively; the isola
from the left panel is drawn in blue in the right panel. Algorithm 2 was used with y ∈ [0, 200] and ntst = 400.

in the upper and lower halves of the domain against each other in the x-direction, the resulting
pattern is still an approximate solution. Among this one-parameter family of approximate
patterns, which is parametrized by the relative shift in the x-direction, there are two exact
solutions, one of which is R-symmetric, while the other has τR-symmetry. We expect that
one of these two symmetric patterns is stable under periodic boundary conditions, while the
other one is unstable in the direction of the shift x.

4.3. From localized stripe to square patterns. For the almost planar stripe patterns that
we discussed in the previous section, we observed the growth of square cells along the interface
between rolls and the trivial state that then merged to form new rolls. This observation led us
to examine localized square patterns on the cylinder. Figure 20 contains continuation results
for localized square patterns that we found near the Maxwell point µs = 0.609 of domain-filling
square patterns. The pattern profiles from panels 1–4 show that new squares are grown at the
interface with the trivial state. The bifurcation curve is an isola, though, and snaking does
not occur. It appears as if the snaking of the pattern is inhibited by the relative proximity of
the roll structures: panel 4 indicates that the localized square pattern tries to grow vertically
oriented rolls. Note that the localized square patterns shown in Figure 20 seem to be stable
along part of the bifurcation curve, which indicates that domain-covering square patterns are
stable in this parameter region. This is surprising since domain-covering square patterns are
known to be unstable at onset in the cubic-quintic Swift–Hohenberg equation [14].

To further explore the interaction between stripe and square patterns, we lowered the
value of ν to 1.06247 and again continued localized almost planar stripe patterns in µ. The
results, shown in Figure 21, indicate that the bifurcation structure is qualitatively similar to
that shown in Figure 10 for ν = 2. Starting from the pattern shown in panel 1 of Figure 21,
one side of the branch approaches a vertical asymptote given by the Maxwell point of 1D rolls,
while the other side of the branch snakes. Along the nonsnaking branch, the pattern grows
four rows of squares, as in panels 2–5, before eventually growing vertically oriented rolls, as in
panel I. Along the snaking branch, an interior plateau of horizontally oriented rolls develops,
as shown in panel II. There are a few interesting differences, both in terms of the shape of

(c) square patterns(b) spot and stripe patterns(a) roll patterns
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Figure 8. The left panel contains the bifurcation diagram for snaking planar localized rolls for ν = 2.
The associated spatial-dynamics interpretation for the y-evolution is shown in the right panel. The roll pattern
shown in the right panel corresponds to a periodic orbit in the y-dynamics: throughout this paper, we indicate
equilibria of the y-dynamics by filled circles, and periodic orbits (in an appropriate Poincaré section) by circled
crosses.

0 0.1 0.2 0.3 0.4 0.5 0.7

2

1

1 2

-0.68

0

0.68

Figure 9. Nonsnaking localized rolls for ν = 2 are shown in the left panel, while the associated spatial-
dynamics interpretation for their y-evolution is shown in the right panel. The roll pattern shown in the right
panel corresponds to an equilibrium of the y-dynamics. (Recall that equilibria are indicated by filled circles.)

4.1. Planar localized rolls. The 1D localized structures found in Figure 1 can be viewed as
planar localized rolls. Figure 8 shows their bifurcation diagram (which is, of course, identical
to those of localized 1D roll patterns) and their interpretation in terms of the spatial dynamical
system (2.2) in the evolution variable y. The rolls in the interior of the localized structure are
periodic in the vertical y-variable, and localized planar rolls can therefore be viewed as R-
reversible homoclinic orbits that arise near a heteroclinic cycle from the equilibrium U = 0 to
a periodic solution that corresponds to the y-periodic roll pattern: this explains why snaking
occurs. We remark that the localized rolls shown in Figure 8 are found to be alternately stable
and unstable.

On the other hand, instead of orienting rolls parallel to the interface with the trivial
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4.1. Planar localized rolls. The 1D localized structures found in Figure 1 can be viewed as
planar localized rolls. Figure 8 shows their bifurcation diagram (which is, of course, identical
to those of localized 1D roll patterns) and their interpretation in terms of the spatial dynamical
system (2.2) in the evolution variable y. The rolls in the interior of the localized structure are
periodic in the vertical y-variable, and localized planar rolls can therefore be viewed as R-
reversible homoclinic orbits that arise near a heteroclinic cycle from the equilibrium U = 0 to
a periodic solution that corresponds to the y-periodic roll pattern: this explains why snaking
occurs. We remark that the localized rolls shown in Figure 8 are found to be alternately stable
and unstable.

On the other hand, instead of orienting rolls parallel to the interface with the trivial
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4.1. Planar localized rolls. The 1D localized structures found in Figure 1 can be viewed as
planar localized rolls. Figure 8 shows their bifurcation diagram (which is, of course, identical
to those of localized 1D roll patterns) and their interpretation in terms of the spatial dynamical
system (2.2) in the evolution variable y. The rolls in the interior of the localized structure are
periodic in the vertical y-variable, and localized planar rolls can therefore be viewed as R-
reversible homoclinic orbits that arise near a heteroclinic cycle from the equilibrium U = 0 to
a periodic solution that corresponds to the y-periodic roll pattern: this explains why snaking
occurs. We remark that the localized rolls shown in Figure 8 are found to be alternately stable
and unstable.

On the other hand, instead of orienting rolls parallel to the interface with the trivial

Figure 2: Examples of patterns observed in the Swift–Hohenberg equation on an infinite

cylinder. See [1] and [5].

would like to use this time and computing resources to better understand the relationships

between these patterns, and, in particular, their connections in parameter space.

As time and interest allow, we may also explore the formation of large localized hexagon

patches. Computing resources were specifically identified as a limiting factor in a 2008

study [4]. However, since this time the underlying package capabilities have progressed

substantially, and revisiting this problem with new computing resources may enable sub-

stantial progress.

Prerequisites: While there are no formal prerequisites for participation in this project,

some familiarity with differential equations and dynamical systems theory would be helpful.

In particular, a basic understanding of bifurcation theory underlies most of the work. I

would be happy to review with any interested students lacking this background; Strogatz

[9] also provides an accessible and useful introduction. Programming for this project will

be conducted in C/C++. Current software is written in Matlab, so our first task will be

converting this software. Depending on our progress we may also use Auto07p, a Fortran

based program for continuation, but no knowledge of Fortran is expected.
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