Anomalous diffusion

December 8, 2000

In this lecture we discuss stochastic models of correlated random walks.
By “correlated” we mean that that if a particle is headed in one direction
then there is nonzero probability that it continues in that same direction for
some time and this probability fades to zero as the time interval increases.
This is, of course, the situation envisaged by Taylor (1921).

The distinction between normal and anomalous diffusion made in lecture
1 can be understood by examining the rate at which velocity correlation de-
crease to zero. Normal diffusion occurs if the velocity correlation decrease
rapidly while anomalous diffusion results from processes in which particles
move coherently for long times with infrequent changes of direction. Roughly
speaking, this distinction is quantified by the tail behaviour of the velocity
autocorrelation function. For example, if the correlation function decays ex-
ponentially then there is normal diffusion, whereas if the correlation function
decays algebraically then there is the possibility of anomalous diffusion.

The definition of anomalous diffusion is based only on the behaviour of
the second moment, (z?). But we usually want to know more about the
distribution of a tracer than simply the second moment. In the case of
normal diffusion, detailed information concerning the tracer distribution is
obtained by solving the diffusion equation

¢ = Dcyy . (1)

Can we obtain continuum models, analogous to (1), which provide the same
detailed information for anomalously diffusing tracer? The main goal of this
lecture is to develop partial differential equation models which can be used
for this purpose.



1 Superdiffusion and subdiffusion

1.1 Taylor’s formula and long tails

Yet again we recall Taylor’s formula which relates the growth of position
variance to an integral of the Lagrangian velocity autocorrelation function,
corr(t),

dii ) = 2/Ocorr(t’) dt’. (2)

In order to obtain (z?) we must integrate (2). Standard manipulations turn
the resulting double integral of corr(t) into a single integral

(22) = 2 /O (t — t')eorr(#)) dt’ (3)

The result (3), which is not in Taylor’s original paper, will prove to be very
useful.

We usually have in mind situations in which corr(t) decreases to zero
as t — oo so that the integrals in (2) and (3) converge to nonzero values.
An example is the renovating wave model, with its “triangular” correlation
function, from lecture 2. Later in this lecture I will introduce the telegraph
model which has an exponentially decaying correlation function, corr(t) =
U? exp(—2at). These are both examples in which correlations decrease very
rapidly so that normal diffusion occurs. But now consider the possibility
that corr(t) decreases so slowly that the integrals in (3) diverge.

Suppose, for instance, that as t — oo, corr(t) ~ ¢t~ with 0 < n < 1.
Even though the diffusivity no longer exists, it still follows from (3) that

(22) ~ 277, (4)

In this case there is superdiffusion: the variance of the particle displacement
grows faster than linearly with time because 2 —n > 1.

Taylor’s formula also contains the possibility of subdiffusion. This case is
subtle because, like the example of the sea-surface mentioned in lecture 1, it
requires that the integral defining D is zero. But suppose additionally that
the remaining integral in (3) diverges. This can happen if corr(t) ~ ¢t~" with
1 < n < 2. The condition that 1 < n ensures that fooo corr(t') dt’ converges
(to zero). The second inequality, n < 2, ensures that fot t'corr(t') dt’ diverges.
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Using (3), we again find the scaling law in (4). However this time, because
2 —n < 1, there is subdiffusion.

At first glance two possibilities above appear as unlikely exceptions to the
more natural cases in which both integrals in (3) converge. However there
are examples in fluid mechanics in which either subdiffusion or superdiffusion
is observed experimentally or computationally. Thus (4) cannot be dismissed
as an unlikely pathology.

1.2 The Texas experiments

An experiment illustrating anomalous diffusion has been conducted in Swin-
ney’s laboratory at University of Texas; see Solomon, Weeks & Swinney
(1994) and Weeks, Urbach & Swinney (1996). These investigators study the
dispersion of particles in an almost two-dimensional flow in annular tank
(see figure 1). The tank is rotating at about 1 or 2 Hertz and the bottom
is sloped to simulate the (-effect. Because of the rapid rotation the flow is
quasi two-dimensional.

The flow is forced by pumping fluid through the tank. If the pumping rate
is sufficiently large then this azimuthal flow is unstable to a vortex-forming
instability. A typical flow pattern in the rotating frame is shown in figure 2.
Evident also in this figure is the azimuthal jet which runs all the way around
the tank. The vortex pattern can be perturbed experimentally by making
the strength of the pumping depend on azimuth. In this fashion, one can
drive an unsteady flow and observe chaotic particle trajectories.

Automated image processing techniques are used to follow nearly neu-
trally buoyant tracer particles suspended in such flow. Typical particle tra-
jectories are shown in figure 3. Particles within a vortex remain trapped for
very long time (stick). Particles in the azimuthal jet experience prolonged
flights around the circumference of the tank. Because the vortex pattern is
not perfectly stationary particles alternate, apparently randomly, between
flying in jets and sticking in vortices.

One can change the pattern of jets and vortices by altering the diameters
of the circular barriers which confine the flow. Thus it is possible to create
a flow with two oppositely directed jets separated by a vortex chain. In this
case the dispersion process is more symmetric than in figure 4 because the
flights go in both directions around the tank.

During a flight the angular displacement is proportional to the time
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Figure 1: A sketch of the rotating annulus; the rotation rate is about 1Hz. Flow is
forced by pumping water in through the ring of holes marked by I and withdrawing
the same volume through the other ring marked O. As a consequence of the strong
Coriolis forced acting on the radial flow between these concentric rings there is an
azimuthal flow around the annulus. The experiment is viewed from above using a
video camera. Figure courtesy of Eric Weeks.



Figure 2: Streaks formed by 100s trajectories of 12 particles reveal four vortices.
Weeks et al. show that the motion of these coherent vortices is chaotic. That is, a
velocity spectrum, obtained by measuring velocity with a hot film probe, is broad
band. Figure courtesy of Eric Weeks.



Figure 3: Trajectories of three tracer particles in the flow shown in figure 2. The
beginning of each trajectory is indicated by a triangle and the end by with a circle.
In (b) the particle spends most of its life trapped in a single vortex. However, this
vortex wobbles erratically because the flow is chaotic. In parts (a) and (c) the
particles experience several episodes of trapping within a vortex and flight around
the tank in the jet. Figure courtesy of Eric Weeks.
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Figure 4: Angular displacement, 6(t) for the trajectories in figure 3. There is an
obvious distinction between the flights and the sticking events. The small oscil-
lations during the sticking events correspond to particle motion within a vortex.
Figure courtesy of Eric Weeks.



elapsed since the flight began:
Af ~ Ut. (5)

The displacement, A#f, is essentially zero during a sticking event (see figure
4).

The experiments show that the dispersion of an ensemble of particles is
superdiffusive. That is

(60— (0)%) ~ 1 (6)

where v > 1; typical values are v ~ 1.4 to 1.7 depending on the experi-
mental configuration. (It is also possible to observe normal diffusion, v = 1,
by strongly forcing the flow and breaking the azimuthal symmetry of the
forcing.)

To characterize the motion Solomon et al. used sticking and flying PDF's:

Pr(a)da = Probability that a flight has a duration € (a,a +da). (7)

Later in this lecture we will refer to a as the “lifetime” of a particle in the
flying or sticking state. We figuratively speak of a particle being born into the
flying state and moving coherently for a lifetime a so that the total angular
displacement during the flight is Af = Ua.

The PDF Pr is normalized by fooo Pr(a)da =1 and

TR = / aPr(a)da = average duration of a flight. (8)
0

The PDF of sticking times, Ps(a), and the average sticking time, 75, are
defined analogously.

Experiments show that as a — oo, Pr and Pg have algebraically decaying
tails:

Pr(a) ~a ", Ps(a) ~a "3, 9)
with
2 < (pr, ps) < 3. (10)
Because of this slow algebraic decay the variance of the lifetimes, defined by
(a®)ps = / a*Prs(a)da, (11)
0



diverges.
The divergence of (a?)r is significant because invoking Einstein’s formula
for the diffusivity
2
p_ (@) 12
T
and using Af = Ua, we conclude that D oc ((A6)?) = U*(a®*)r = oo. The
divergence of D is symptomatic of superdiffusion.

Notice that the denominator 7 in (12) is related to the average flying and
sticking times, 7r and 7g, which are both finite. Thus, in the Texas experi-
ments, we can say that anomalous diffusion occurs because the numerator of
(12) is divergent. In other cases it is the denominator which causes trouble.

The Texas experiments show that anomalous diffusion occurs in realistic
and geophysically relevant systems. Several theoretical questions suggest
themselves. How do the algebraic tails of Ps and Pp arise, and can we make
a microscopic models which exhibits this phenomenon? Can we relate the
exponents 7, ur and pug? (From section 4, the answer to the last question is

V=4 pr)

2 The telegraph model

The key issue raised by anomalous diffusion is decay of velocity correlations.
Thus our goal is to formulate models for which we can explicitly calculate
velocity statistics and understand the decay of correlations. Our first at-
tempt is not very ambitious: we begin with the telegraph model, which is the
simplest example of a continuous-time correlated random walk.

2.1 The Lagrangian formulation of the telegraph model

In a telegraph process the velocity of particle n, denoted by w,(t), can have
only one of two possible values, +U and —U. The velocity of each particle,
u,(t), flips randomly back and forth between £U with a transition probability
a per time. This means that in a time dt a fraction adt of the ensemble
switches velocity. Because the transition rate, «, is constant we can say that
a particle has no “memory” of when it first arrived in its present state. Thus
this telegraph model is Markovian.



We refer to the prescription for constructing a telegraph process as model
A. There is a variant, model B, discussed below.

With the prescription above, the velocity of a particle is a discontinuous
function of time as shown in figure 5. The correlation function and the
diffusivity are

U2
corr(t) = U?e=20lt D= / corr(t =5 (model A).  (13)
a’
Notice that the corry is infinite at ¢ = 0; this is because the acceleration is
infinite at the discontinuities in figure 5.
To obtain (13), return to the definition of the correlation function

corr(t Z U, (0)uy, (t (14)

where N is the total number of particles in the ensemble. Suppose that at ¢
the sum on the right hand side has P(t) positive terms, all equal to U?, and
N — P(t) negative terms, all equal to —U?. Thus

2

corr(t) = UW[QP(t) — NJ. (15)

In a time dt, Padt of the positive terms become negative and (N — P)adt
of the negative terms become positive. Thus, at ¢ + dt,

P(t +dt) = P(t)(1 — 2adt) + Nadt, (16)

and the analog of (15) is:

corr(t 4+ dt) = UWQ[QP(t)(l —2adt) + 2Nadt — N]. (17)

Taking the limit d¢ — 0 in (17) gives corr; = —2acorr; the solution of this
differential equation is (13).

An alternative telegraph process (model B) is constructed by imagining
that at random instants each particle flips at coin. The flipping rate is a so
that in a time dt, there are Nadt coin flips. After each flip, the velocity is
+U if there is a head and —U if a tail. With this prescription, a particle will
change direction on average once out of every two tosses. On the other tosses
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A random telegraph process C(t):UZexp[-z altl]
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Figure 5: An example of a telegraph time series, and the telegraph correlation
function.

the particle continues in the same direction and the result is as if nothing
happened. Thus with model B we simply replace o by «/2 in our earlier
calculations and consequently the correlation function and diffusivity are

o0 2

corr(t) = U?e™M, D= / corr(t) dt = %, (model B). (18)
0

The difference between model A and model B is trivial. However the distinc-

tion between the two cases will plague us later.

If we are searching for a model of anomalous diffusion then the telegraph
model is a disappointment: the exponentially decaying correlation function
ensures that D is finite and that the displacement variance ultimately grows
diffusively. We continue our investigation of the telegraph model in order to
better understand “ultimately” and because in section 4 the telegraph model
is used as the foundation of more elaborate models which do show anomalous

diffusion.

2.2 The Eulerian formulation of the telegraph model

Now we ignore the Lagrangian information contained in the correlation func-
tion (14) and instead we give an Eulerian formulation of the telegraph pro-
cess. Let R(z,t) denote the density (particles/length) of particles moving
to the right with velocity +U and L(x,t) denote the density of left-moving
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particles with velocity —U. The coupled conservations laws are
R, +UR, = a(L — R), L,—UL,=a(R-1L). (19)

These equations should be self-evident...
We can put (19) into a revealing alternative form by defining the total
concentration, C'(x,t), and the flux, F'(x,t), as

C=R+1L, F=UR-1L). (20)
In terms of these new variables the model is
Ci+F,=0, F, +2aF = ~U*C, . (21)

The first equation is conservation of particles and the second equation is the
flux-gradient relation.

Notice that in (21) Fick’s law does not apply — the flux F' is not in-
stantaneously related to the gradient C,. Equation (21b), which might be
called Cattaneo’s law (see the 1989 review by Joseph and Preziosi), can be
solved as a first-order differential equation for F'(z,t). Thus, the flux at x is
expressed as weighted integral over the past history of the gradient at x:

t
F(x,t) = —U2/ e 20O (¢ dt (22)
The flux has a “fading memory” of the gradient and the exponential in (22)
is the fading factor which strongly weights the most recent values of the
gradient.
Next, if we eliminate F' from (21), we obtain

Ctt + 2060,5 — UZCxx =0. (23)

This is the telegraph equation; the diffusion equation is obtained only as an
approximation which applies to the low frequency and wavenumber compo-
nents of C'(x,t). On these large and slowly evolving scales one can neglect
the term C} in (23) and so obtain the approximation

U2
:%‘

The diffusivity D in (24) was anticipated in (13).

C,~DC,,, D (24)
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Figure 6: Solution of the telegraph equation. ot is in the top corner of the panel.
Att =0, R= L = exp(—2?/50). The solid curve is C = R+ L, and R and L are
shown as dotted and dashed curves.
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Figure 6 shows a numerical solution of (23) starting with an initial con-
dition of the form

R(z,0) = L(z,0) = e #*", (25)

At small times the density C' develops a double peaked structure as the left
and right going populations separate. This behaviour is transient, and at
longer times the central part of the concentration relaxes to the well-known
Gaussian solution of the diffusion equation.

According to (23) the disturbance travels at a finite speed: these are the
“heat waves” discussed by Joseph and Preziosi (1989), and also evident in
figure 6. The approximate diffusion equation (24) makes the unrealistic pre-
diction that disturbances are propagated at infinite speed. This unphysical
consequence of the diffusion equation motivated Cattaneo to propose (21b)
as an alternative to Fick’s law.

These considerations shows that one cannot blithely assert the validity of
the diffusion equation (24) as an exact description of dispersion. The diffusion
equation applies only as an approximate description of low frequencies and
long wavelengths.

2.3 Discretization of the telegraph model

This section is a digression. Read on if you want to learn how to solve the
telegraph equation using a simple numerical scheme. (This is how I drew
figure 6.)

We reformulate the telegraph model in terms of discrete variables: divide
the z-axis is divided into segments of length dx separated by “scattering
sites” at x, = ndx. Time is also discretized in units of §t so that ¢t = T'dt
where 7" is an integer 7' = 0,1,2- .- The walkers move along the z—axis with
a velocity that is either +dx/dt or —dx/dt. In terms of the continuous model
in (19)

oz

S ot
When a walker reaches the scattering site at x,, = ndx he is “backwards scat-
tered” or reflected with probability b and “forward scattered” or transmitted
with probability 1 —b. Because the probability of a change in direction, b, is

the same for left as for right moving walkers there is no mean velocity along
the line.

U (26)
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Figure 7: A steady state with constant flux, f = U(1—0b)(R— L), passing through
site n.

Let R, (T)dx be the number of right walkers in the segment n, ndzr < x <
(n + 1)dz. The number of left walkers, L,,(T")dx, is defined analogously. R,
and L,, are the discrete analogs of the continuous densities used in (19).

With these rules and definitions, the discrete evolution equations for the
ensemble are

Ro(T) = (1 = b)Rur(T — 1) + bL(T — 1), (27)
Lo(T) = (1 — ) Lysr (T — 1) + bR (T — 1) . (28)

For instance, in the first equation above, the number of right movers in
segment n is equal to the number in segment n — 1 at the previous time that
successfully passed through scattering site n, plus the number of left movers
previously in segment n that were reflected at this same site. Figure 6 shows
the result of iterating the discrete system above.

One exact solution of the difference equations above is

R,=1L,= Ln+1 = Rn+1 = (29)

This solution is steady: R,(7) = R,(T — 1). In fact, (29) is the discrete
analog of the equilibrium solution of the diffusion equation. The distribution
of walkers is spatially uniform with equal numbers going left and right in
each interval and there are no concentration gradients. An individual walker
is moving to and fro, but the ensemble is in steady state.

Next, we consider the constant-flux solution. In figure 7, R right walkers
impinge on site n from the left and L left walkers impinge on n from the
right. In steady state it must be that on the left of n there are bR + (1 — b)L
left walkers moving away, while to the right there are bL + (1 — b)R right
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walkers moving away. Thus the flux to the right of the site is

f:U[(l—b)R+bL]—UL:i—f(l—b)(R—L), (30)
where we have used U = dz/dt. Because there is a steady state, calculating
the flux to the left of the site gives exactly the same result and so there is a
nondivergent flux of walkers along the line.

Next, we can calculate the concentration difference across the site in
figure 7. To the right of the site the total density of walkers is

c"=L+bL+(1-b)R, (31)
while on the left the density is

¢ =R+bR+(1-0)L. (32)
Combining (31) and (32) we have for the concentration jump across the site

dc=ct —c =2b(L — R) (33)
Thus, using (30), the flux-gradient relation in steady state is

dc (1 —1b) (0x)?
/= D(Sx’ b= 2b ot (34)
Does it seem obvious to you that the diffusivity should diverge as b — 07 If
you think of the diffusivity as the area under the correlation functions then
this divergence should be intuitive. It is an instructive exercise to obtain D
in (34b) using Taylor’s formula. (Hint: consider N > 1 right walkers which
initially set out together. At t = T'dt, after T encounters with scattering
sites, how many of these walkers have changed direction an even number of
times, and how many odd?)
Comparing the equation above with our earlier expression for the diffu-
sivity, D in (13) and (24), we conclude that

b

(35)
Thus, with (26) and (35), we can express the parameters of the discrete

model, (dx,dt,b), in terms of the parameters characterizing the continuous
model, U and a.
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3 Age-stratified populations

The telegraph model from section 2 is Markovian. This means that each
particle has a constant probability per unit time, «, of switching direction.
Thus, no matter how long a particle has been moving to the right (say),
its probability of switching direction in the next dt¢ is always adt. Conse-
quently an exponentially decreasing number of particles move coherently for
long intervals and the telegraph model in (19) does not exhibit anomalous
diffusion.

A satisfactory description of anomalous diffusion demands a non-Markovian
model in which particles have some memory of their past motion. To obtain
superdiffusion it is necessary that a right-moving particle is less and less
likely to change direction as it spends more and more time moving right!.

Such memory effects are implicit in the models discussed by Weeks et al
(1996), and in several of the articles in the conference proceedings edited by
Schlesinger, Zaslavsky & Frisch (1994). The stochastic models discussed in
Schlesinger et al. draw heavily on statistical physics. In this lecture we are
going to develop the theory from scratch using a formalism which is accessible
to people whose background is in fluid mechanics. The climb begins with an
excursion into the theory of age-stratified populations.

Consider a population of items with a finite lifetimes and a death rate
which depends on age, a. For example, light bulbs in a large building, or the
population of the United States. At time ¢ the age structure of the population
is characterized by a density function for which f(a,t)da is the number of
items whose age is between a and a + da. In terms of f, the total number of
items in the population, N(¢), and the average age, a(t), are given by

N(t) = / f(a,t)da, a(t) = Nl/ af(a,t)da. (36)
0 0
The density function evolves according to

fe+ fataf =0, (37)

LA popular metaphor for the Markovian case is radioactive decay: a molecule has a
constant probability per unit time of decaying. As a metaphor for the non-Markovian
case, imagine entering an enormous maze and then trying to find your way back to the
entrance. The longer one has wandered, the less the chance of stumbling on the exit in
the next dt.
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where a(a) is the death-rate. The term f, in (37) says that the population
translates along the age-axis at a rate one year every year. To completely
specify the problem we must supply an initial condition, and also a bound-
ary condition at @ = 0. The boundary condition at a = 0 has an obvious
interpretation:

f(0,¢) = the birth (or replacement) rate. (38)

In the case of a population of people, the boundary condition above is a flux
of babies into the system.

The Markovian limit is the special case in which « is independent of a.
This model of «v is unrealistic for both light-bulbs and people, though it might
apply to a population of radioactive molecules. The Markovian case is very

simple because one can integrate (37) over a and obtain a closed equation
for N(t):

N, +aN = f(0,t). (39)

Thus if « is constant and we need only the total number of functional items
at t then we do not need to solve partial differential equations and deal with
the age structure of the population.

3.1 The steady-state solution

As a first illustrative example, suppose that the replacement rate is adjusted
so that N is constant. (Janitors replace light bulbs as soon as they burn-out.)
In this case the equilibrium solution of (37) is

fla) = Nt~"¥(a), (40)

where
U(a) = exp (— /0 Z(d)dd), ;= /0 “(a) da. (41)

The function ¥, and its integral 7, will occur frequently in the sequel. Notice
that the replacement rate is f(0) = N/7 and this suggests that 7 should be
the average lifetime of an item. On the other hand, 7 will not usually be
equal to a in (36). I suggest brooding on this “paradox” and, as an exercise,
see if you can resolve this confusion to your satisfaction by the end of this
section.
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In (41) we assume that the death rate a(a) is such that as a — oo,
U(a) — 0 fast enough to ensure that 7 is finite. For instance, if v is constant
(this is the Markovian case) then ¥(a) = exp(—aa) and 7 =a = 1/a.

If the death rate o decreases with age then the average liftetime 7 might
not be finite. For example, consider the specific model

O‘Zeia’ = \p(a):(gia>y. (42)

Provided that v > 1 then the integral of ¥(a) converges and 7 = 6/(v — 1).

If v < 1 then 7 = oo and there is no steady solution. To understand this
curious result we must solve an initial value problem (see appendix 5). Here
we just remark that if ¥ < 1 then the average lifetime of a bulb is infinite.
Detailed solution of the initial value problem in appendix 5 shows that in this
case the replacement rate is f(0,¢) oc #*~1. That is, the total number of new
bulbs which have been installed at time ¢ grows like t¥ < t. The hypothetical
manufacturer of lightbulbs with v < 1 is threatened with bankruptcy: sales
decrease with time, even though every bulb eventually fails.

3.2 A cohort of babies

Imagine a cohort of babies leaving the maternity ward together, or a box of
new lightbulbs shipped fresh from the factory. These items will function for
varying amounts of time, and so we can speak of the PDF of lifetimes. We
denote this PDF by P(a), and our goal is to relate P(a) to the death rate
ala).

Consider a group of N items which all start with a = 0 at ¢ = 0. What
fraction of this cohort survives at ¢ > 07 The surviving fraction is also the
fraction of lifetimes longer than ¢ and so

surviving fraction at t = U(t) = / P(a)da. (43)
¢

To calculate the surviving fraction, we solve (37) with the initial and bound-
ary conditions

f(a,0) = Né(a), f(0,t) =0. (44)
The solution of (37) and (44) is
fla,t) = NY(t)d(a —1), (45)
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where U is defined in (41). Thus ¥(t) is the fraction of the cohort which is
still alive at time t; we refer to ¥ as the survival function.
It now follows from (43) that the PDF of lifetimes of new items is

P(a) = -V, = aV. (46)

The average lifetime, 7, is given by the equivalent expressions:

7= /0 OZP(a) da = — /0 W, da = /0 oo‘If(a) da. (47)

Thus, as was suggested in the discussion following (41), to keep a population
in equilibrium the replacement rate is equal to the size of the population, N,
divided by the average lifetime of new items, 7.

3.3 Extinction of a population

As a final example, suppose that at ¢ = 0 we have the steady-state lightbulb
population in (40). If the janitors then go on strike, so that bulbs burn out
without replacement, then how many bulbs are still operating at ¢ > 07 In
this example we must solve (37) with the initial and boundary conditions
that

f(a,0) = N7~ 1¥(a), f(0,t)=0. (48)
The solution is
fla,t) = H(a—t)NT'¥(a), (49)

where H(a —t) is the step function. Thus the fraction of surviving bulbs at
t1s

ot)=1" / U(a)da =171 / (a —t)P(a) da. (50)
¢ t
Using the specific model of « in (42), the surviving fraction is
Ot)=(1+6 ') (51)

O(t) is the most slowly decaying function we have seen so far: as t — oo,
O©(t) > Y(t) > P(t). This model may be relevant to the very slow extinction
of professors once the supply of graduate students is cut-off.
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Comparing the results in sections 3.1 and 3.2, we see that the steady
state population in section 3.1 contains more long-lived items than are in
a cohort of new items section 3.2. This means that the average lifetime of
the light bulbs currently operating in the Empire State building is longer
than the average lifetime of bulbs shipped from the factory. The reason is
obvious: items with brief lifetimes fail quickly, and will likely be replaced
with items whose lifetime is closer to the mean. Thus, fragile individuals are
underrepresented in an operational population.

4 The generalized telegraph model

4.1 Formulation

Using the machinery from the previous section we now construct a general-
ization of the telegraph model which exhibits anomalous diffusion. In this
generalization particles switch randomly between moving with u(t) = +U,
u(t) = 0 and u(t) = —U. The transition probabilities between these states
are functions of the time since the last transition. In other words, each
particle carries an “age”, a, which is the time elapsed since the particle
transitioned into its present state. We denote the density of right moving
particles at (z,t), with age a, by R(a,z,t). For left-moving particles the
density is L(a,t,x), and for the stationary particles the density is S(a, z,t).
We refer to the left and right-movers collectively as “flying particles” while
the stationary particles are “stickers”.
The flying particles satisfy the conservational laws

Rt‘i‘Ra‘i‘URx"—CYFR:O, £t+£a—U[,I+OéF£:O, (52)
while the sticking particles have
Si+S,+asS=0. (53)

The death rates of flying and sticking particles, ar and ag respectively, are
functions of age a; it is through this device that particles have a memory of
their previous history. The price we pay for this nonMarkovian memory is
that there are now three independent variables, (a,t,x).

Stationary particles are born when left and right-moving particles die.
And, conversely, when a stationary particle dies it is reborn as either a left
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moving particle or a right moving particle with equal probability. Notice
that in order for a right-moving particle to become a left-moving particle it
must pass through the intermediate state with « = 0. These karmic rules are
enforced by boundary conditions at a = 0:

£(0,8,2) = R(0, 1, 2) = % /0 “as(@)S(a t,7) da, (54)
and
S(0,t,7) = /O “ar(a) [£(a,,2) + R(a,t, 2)] da. (55)

Trajectories of particles moving with this generalized telegraph process are
shown in figure 8.

The model we have formulated here is a generalization of the telegraph
model in two ways. First, there are three states: left, right and stationary.
This minor embellishment is motivated by the Texas experiments in which
trapping in a vortex corresponds to the stationary particles. The nontrivial
generalization is the introduction of the age variable used to capture memory
effects. As an exercise, the student can show that if ar and ag are indepen-
dent of a then one can easily integrate over a and reduce (52) through (55)
to a three-state telegraph model. (This exercise shows how the boundary
condition at a = 0 works.) As a sequel to this exercise, discuss g — oo and
show that in this limit one obtains effectively a two-state telegraph model.
Are you surprised that the diffusivity is given by (18)? That is, why do we
recover model B, rather than model A, when the sojourns in the intermediate
state u = 0 are very brief?

In order to model slowly fading velocity correlations and anomalous dif-
fusion we use

Vs

v
ap(a) r ag(a) = ot a

:0F+6L7

(56)

With the form above, the transition rates decrease as particles age. Numer-
ical simulations of the three-state model using the transition rates in (56)
show that many particles move in the same direction for a long time (see
figure 9).

The main point of (56) is that if @ > 1 then the transition rates ap
and ag are proportional to a~!. This inverse dependence on age ensures

that the flying and sticking PDFs, Pgr and Ps in (7), decay algebraically.
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Figure 8: Trajectories of particles in the generalized telegraph random pro-
cess. All particles are released from z = 0.

Thus (56) incorporates important experimental information into the model?.
One can make a dimensional argument in support of (56): ar and ag have
the dimensions of inverse time. If the only time-scale relevant for long-lived
particles is the particle age, a, then it follows that apr and ag are inversely
proportional to a. We now show that the parameters vr and vg are easily
related to the experimentally measured exponents pupr and pg in (9).

2As far as scaling exponents are concerned, only the a > 1 structure of ar and ag
matter. We use the specific functional form in (56) for simplicity.
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Figure 9: A simulation with N = 10* particles; ar(a) = as(a) ~ 1.35/a. Upper
panels: PDFs as a function of age and position show that there are many particles
that either stick or move at a constant velocity for nearly the whole simualtion.
Center panels: PDFs of the position of particles develop tails larger than Gaussians
as time goes on. Lower panels: PDFs of the age of particles have a spike at large
times, because there is a fraction of particles that never die.
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4.2 The equilibrium solution

The system (52) through (55) has a solution which is homogeneous (9, = 0)
and steady (0; = 0). This equilibrium solution is

R(a,x,t) = L(a,t,z) = r¥Yp(a), S(a,t,z) = 2r¥g(a) (57)

where ¥ g(a) is

Urs(a) = exp (— [arst@) da') | (59)

The constant r in (57) is the transition rate between the different states; r
is determined by the normalization condition:

e}

N:2T<TS—|—TF), TF,SE/ \I/RS((I)CICL. (59)
0

We can use the results from section 3 to interpret 77 and 75 as the average
lifetimes in the flying and sticking states respectively. Using (46), the PDF
of lifetimes in those states is given by

Prs=apsVrgs. (60)

Using the expression in (56) for apg, we see that as a — oo, the survival
functions decay algebraically with ¥pg ~ a7, and so Ppg ~ a "Fs~1. It
follows that the exponents pp and ug defined in (9) are related to vp and vg
by

HEs = VErgs +1. (61)

We can summarize our arguments to this point by observing that the exper-
iments provide the flying velocity, U, the average lifetime in the flying and
sticking states, 7r g, and the exponents prg. These five experimental data
determine the five parameters in the generalized telegraph model, namely
(U, vEs,0r,s)-

4.3 Formulation of the initial value problem

Now that we have determined the model parameters using experimental con-
straints it is time to do some mathematics and use the model to predict the
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exponent 7y in (6). The simplest intial value problem we can consider is (52)
through (55) with

[R(a,0,x),S8(a,0,z),L(a,0,2)] =7 [Vr(a),2Vs(a), Vr(a)] 6(x). (62)

The constant r is given in (57). Thus, the initial population has an equilib-
rium distribution of ages and is released at © = 0. Because of the symmetry
between left and right moving particles

R(a,t,z) = L(a,t,—x), S(a,t,x) = S(a,t,—x). (63)

Equation (63) greatly simplifies subsequent algebra.

One technical point (which I confess confuses me) is using the equilibrium
age distribution as the initial condition in (62). This choice leads to simple
calculations below. And perhaps the gross details of the dispersion process,
such the exponent ~, are independent of the initial distribution of ages? As
an excercise I suggest solving the initial value problem using other initial
conditions e.g., R(a,0,z) = §(a)d(t) etcetera. Are there any significant dif-
ferences in the t — oo structure of the solution?

Our strategy will be to obtain a closed hierarchy of spatial moments by
multiplying the conservation laws (52) and (53) by z™ and integrating over
x. It is possible to solve the first few members of the hierarchy and show
that if aps and has the form in (56) with 1 < v < 2 then as t — oo

/ / R(a,t,z) + S(a,t,x) + L(a,t,7)] dzda oc 2777 . (64)

Before entering this calculation, we give a simple argument which suggests
how the anomalous exponent 3 — vp > 1 arises in (64).
The variance (z?) in (64) can alternatively be written as

2 _ ]' Y
_Ng (65)

At time t > 0 some of the N particles will have moved coherently with
unchanging velocity (either +U or —U) ever since t = 0; half of these particles
will be at x = Ut and the other half at x = —Ut. These “coherent particles”
each contribute a term U?t? to the sum on the right hand side of (65). The
number of coherent flying particles is just ©(¢)N where ©(t) is given by
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(51) with v replaced by vp. Thus, because every term in the sum in (65) is
positive, one has

(x%) > O U ~ UG 13w (66)

The inequality (66) has teeth only if 3 — vp > 1: then we learn that the
coherent particles alone produce a superdiffusive contribution to the variance.
The argument above may suggest to you that superdiffusion is due solely
to the few extreme particles which move without changes in direction. This
is an overstatement: the lower bound in (66) is generously less than the
exact result for (z%) which we obtain in the next section. Thus “nearly-
coherent” particles, meaning particles which change direction only once or
twice, also make a large contribution to the sum in (65). This is an essential
point, because in their analysis of the experiments Solomon et al. discarded
all coherent particles from the data set3. Thus the exponent measured by
Solomon et al reflects only the contribution of nearly coherent particles.

4.4 Solution of the initial value problem

This is a dry section which contains the details of the analytic calculation
of (x?). The main point of interest here is that a lot of the algebra can be
avoided by proving (75) below. (I suggest this as an exercise.)

The spatial moments are defined by

R, (a,t),Sy(a,t), Ly, (a,t)] = /oox" [R(a,t,z),S(a,t,z)L(a,t,x)] dz,
- (67)
Because of the symmetry in (63)
Ru(a,t) = (=1)"L,(a,t), Sn(a,t) =0 if n is odd. (68)

The result above allows us to work exclusively with R,, and S,, while retaining
full information about the distribution. Using the symmetry, the variance
can be written as

(2?) = /0 2Ry + Syda. (69)

3This drastic procedure is necessary because some fraction of the experime ntal particles
are in integrable regions and will fly forever. Retaining all these particles will ultimately
lead to the trival ballistic exponent v = 2.
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The zeroth moment of (52) through (55), with the initial condition in
(62) is

[Ro(a,t), Sola,t), Lola, )] = r [Wr(a), 2Us(a), Up(a)] . (70)

That is, the zeroth moment is just the equilibrium solution. (This is why us-
ing the equilibrium age distribution as the initial condition is so convenient.)
Using (68), the first spatial moment is &) = 0, £4(a,t) = —R4(a,t) and

Rit + Rig +arRy = Ur¥p, R1(0,t) =0, Ri(a,0)=0. (71)
The solution of the initial value problem (71) is
Ri(a,t) = UrVe(a) min(a,t). (72)
The second moment equations are £ = Ry and
Rot + Raq + apRy = 2UR,, Sot + Saq + sS2 = 0, (73)

with the a = 0 boundary condition that

o0 o0

2R5(0,1) :/0 ag(a)Ss(a,t)da, S2(0,1) :2/0 ar(a)Ra(a,t)da. (74)

To obtain the variance in (69) we do not need the complete solution of (73)
and (74). Instead, after some judicious integration over a, one finds that

d

E<x2> = 4U /OOORl(a, t)da. (75)

Substituting (72) into the result above we obtain

t

%@2) = AU?r [ /0 aVp(a)da +t /t OO\IJF(a) da} : (76)

If the right hand side of (76) approaches a constant as ¢t — oo then the
variance grows diffusively. Otherwise there is anomalous diffusion.

With (76) in hand, one can easily determine if particular models of ap
and Vp lead to anomalous diffusion. For example, with the model in (56),
evaluating the integrals in (42) gives a pleasant exact solution

a
dt

(1+1)>r 1

W =AU e e =) - D =2

(77)
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where £ = t/0.
The asymptotic behaviour at large time depends crucially on vg. If vp > 2
then there is normal diffusion:

d, 5 4U%r0%, 9
— ~ ).
dt<x ) (vp — 1) (vp — 2) + O ) (78)
If 1 < vp < 2, there is superdiffusion
d, , AU 2"
— 2 O(1). 79
34 e =1 " (1) (79)

(At vp = 2 there is a logarithmic term.)

Notice the minor role of ag(a) in the solution above: if vg > 1, so that
the mean sticking time is finite, then the parameters vg and fs occur only in
T.

4.5 An exercise for the diligent student

Consider an asymmetric two-state model
Li+ Ly + ULy + ap(a)L =0, Ri+ Ry + UrRy + ar(a)R =0, (80)

with the boundary conditions

L£(0,t,x) = /OOO&R(a)R(a,t,x) da, R(0,t,z) = /OOOaL(a)E(a,t,x) da.

(81)
Show that the average velocity is
= TLUL + TRUR /oo
U= —"——"—, LR = | VYig(a)da, 82
e Li= | Wila) (82)

where Uy, and Vg are defined by analogy with (41). Show that the Laplace
transform of the velocity autocorrelation function is given by

L (83)
§ TLTrR  s*(1 —¢rig)

corr(s) = Unyrg

1 o+ 7r(1—4r)(1 - Q/AJR)]
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where
_ TL+ TR

Uk s =

(If you use the moment method, you will need Laplace transforms to solve
the integral equation which arises at n = 1.) Using the model

UrUp. (84)

VR,L
agr(a) = Onita (85)

perform an asymptotic analysis of (83) to identify the anomalous diffusion
exponents which occur if either or both of v, and vi are less than 2.

5 Solution of an initial value problem

In this appendix we discuss the issue raised at the end of section 3.1 and
analyze a problem in which the death rate of old items is so small that the
average lifetime 7 is infinite. For example, this is the case v < 1 in (42).
Specifically, consider the initial value problem posed by (37) with the initial
and boundary conditions

f(a,0) = Né(a), f(0,t) =r(t). (86)

In (86) the replacement rate r(t) is determined by requiring that

N = / f(a,t)d (87)
The solution of (37) and (86) is
f=NY(t)(a—1t)+ Y(a)r(t —a). (88)

The first term on the right hand side of the equation above is the cohort
of initial items aging and dying. The second term is influx of new items.
Imposing (87) on (88), we obtain an integral equation for r:

t

N = NU(t) + /O W(a)r(t — a) da. (89)

The integral relation above is known as the renewal equation
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Because of the convolution in (89), the Laplace transform

[(s), 7(s)] / "W (a), r(a)] da, (90)

is gratifying. In this way we find from (89) that

1—sW

r=N ~
sW

(91)

The large-time behaviour of r(t) can be obtained from (91) using standard
asymptotic methods.

If a(a) x 1/a as a — oo, then the rightmost singularity of W(s)in the
complex s-plane is the branch-point at s = 0. We show below in (94) through
(97) that the structure of ¥ at this branch-point is

U(s)=wws" ' 7+ (92)

If v < 1 then the singular term involving s*~! dominates the constant 7 as
s — 0. In this case, from(91),

N N 0 Ntv—t
r ~
wl(v)’

7(s) ~ as t — 00 (93)

ws?’

Because v < 1 the replacement rate vanishes as t — oo.
To explain the small-s expansion in (92), we use the model death-rate in
(42), which produces the survival function

U(a) = (9-0“1)”‘ (94)

The Laplace transform in (90) is then

A

U(s) = 0"s" e T(1 — v, 0s), (95)

where I'(a, x) is the incomplete I'-function defined by Abramowitz & Stegun
in their article 6.5.3. This Laplace transform can be rewritten as

A

/] 0"s" e’ T(1 — v) — 0 (1 —
(9 =0T - I tay
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The form above is convenient because the singular terms containing s~!

are localized in the first function on the right hand side. When s < 1 the
expansion of (96) is

U(s)=0T(1—v)s" ' +

f 1 +O(s,s"), (97)

vV —

which is the form assumed in (92).
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