
Gfdnavi: A tool to archive, share,
distribute, analyze, and visualize

geophysical fluid data and knowledge

Takeshi Horinouchi (Kyoto Univ Hokkaido Univ(soon)),
Seiya Nishizawa (Kyoto Univ Kobe Univ),

Chiemi Watanabe (Ochanomizu Univ),
T. Koshiro, A. Tomobayashi, S. Otsuka,

Y. Morikawa, Y.-Y. Hayashi, M. Shiotani, and
GFD Dennou Club (Davis project)

What is Gfdnavi

• = Geophysical fluid data navigator
• A suite of software to construct Web-

based database of geophysical fluid data
• Functionality:

– Search
– Data analysis and visualization
– Documentation of analysis results

• Available:
http://www.gfd-dennou.org/arch/davis/gfdnavi/

Background

Problems of Web-based database
and analysis tools

• Limited analysis capability
We often end up with downloading data

• Not very suitable to desktop use
Service are not available to local data

We would rather like to extend desktop tools
(such as IDV) to cover persistent data services

More on the analysis capability

• Impossible to predefine sufficient
functionality (since we are scientists)

Programmability is the key
• Programmability in two ways:

– Programmable on web-browser
– Web-service API (program locally)

Both are desirable

Visualization is not the goal

• To others (scientists / society): reports
• While working: memos / internal documents
• To collaborators: reports / know-how /

discussion

Outputs are documents
(not just pieces of images)

Foundation of Gfdnavi

Two fundamental libraries used to
build Gfdnavi (open-source)

• GPhys – a Ruby library to analyze and visualize
geophysical fluid data (by Horinouchi etc since 2003)

– For consolidated access to data in files (NetCDF, GRIB,
GrADS, NuSDAS, HDF5-EOS) or on runtime memory – A
community infrastructure for data analysis
[http://ruby.gfd-dennou.org/] (since 1999)

• Ruby on Rails – Development framework for Web
application (since 2005)

– Made it drastically easy to develop Web applications
with RDB

– Written in/for Ruby We can use GPhys directly

VArray (Virtual Array) – with attributes (incl. units)
Abstracts Data Storage
(Entity can be in file(s) or multi-D Array on memory; can also be a
mapped subset of another VArray or aggregation of VArrays)

GPhys (Gridded Physical quantity)
a GPhys has 1 array data (VArray)

grid (Grid)has 1

axis(Axis)has rank

coord.var.(VArray)1D

others (VArray)1D

has 1
has 0..

AssocCoords (GPhys) Multi-D
has 0..

(new) trans-
formed grid etc

u = GPhys::IO.open(”u.nc”,”U”)
v = GPhys::IO.open(”v.ctl”,”V”)
uv = u * v

in NetCDF [m/s]
in GrADS [m/s]

result on memory [m2s–2]

Why do we use Ruby?

• Since we wanted a language for daily data
analysis
– Easy (fast) to write
– Interactive use like GrADS

– Python is also fine (but we love Ruby)

Introducing Gfdnavi

Early History (Aug 2006):
Rough design by Horinouchi etc (at a meeting of
the GFD-Dennou davis project)
First implementation by S Nishizawa – In two
weeks (since then he is the most contributing to
its development)

Since 2006

Overview

User

RDB (metadata etc)

Browser Access

Local file system
(or opendap dir) meta data scan

sync with DB

access numerical

data

O/R mapping

Web
service

Gfdnavi
MVC
core

Web
server

(webrick/
Apache)

Metadata DB

Directory tree

group

attributes

data files variables (numeric data)

supplementary
text files

description = “……..”
param1 = value1
param2 = [val21,val22]

• Metadata
– name-value attributes; with a few standard field names
– geospatial- and time-coordinate info
– size, user info etc

• Directory structure (inherit metadata from parent directories)
• Generated by automatic scan (with a command)

– variables: reading attributes through GPhys
– directories: directory name and “Readme”-type texts

1

n
1

n

spatial_and_
temporal_
attributes

keyword
_attributes

1
n

variables

directories
1

n

Treated asdirectories

User Interface
Home : Independent simple html replaceable

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Typical work flow
to use Gfdnavi’s
browser UI

Browser UI Header

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

MS Explorer-like
tree

Directory
contents Further details

(metadata)

Select variables in
this file to analyze /

visualize

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Free text

Attributes

Search with
Google Maps

Results

Select a variable to
analyze / visualize

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Animation

Draw method: You can supply your own

Ruby Script &
Minimum

Subset Data
Save in the DB
(login needed)

Get the URL to
redraw the img

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

View docs
(Knowledge)

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Functionality

Browse directory
tree (Finder)

Search
(Explorer)

View docs
(Knowledge)

Write knowledge
document

Visualize / analyze
(Analysis)

repeat

Select numerical data
Select

Web service

Tomorrow by Seiya Nishizawa

Network of Gfdnavi
Under development by C Watanabe (Ochanomizu

Univ)
To create peer-to-peer network for cross search
and cross use among Gfdnavi servers
Then one can access local data and remote
data together

RDB

RDB RDB

RDBRDB
dataA dataB

dataC

Summary

• Novel features of Gfdnavi
– Seamless coverage from desktop use to public

data service (by having custom web server)
– Programmability (on browser & by web service)
– Documentation of analysis results (dynamically

reproducible/extendible) (memos / reports /
PR / Blog for scientific collaboration)

• Good implementation
– Extendibility (by using GPhys)
– Swift development (by using RonR)

Tomorrow by
S Nishizawa

Future Outlook

• Support Networking Create a Web of
scientific data & knowledge

• Increase analysis & visualization
functionality (many needed)

• Improve remote API accesses (tomorrow’s
topic)

fin

GPhys (Gridded Physical quantity)

a GPhys has 1 array data (VArray)

grid (Grid)has 1

axis(Axis)has rank

coord.var.(VArray)1D

others (VArray)1D

has 1

has 0..

AssocCoords (GPhys) Multi-D
has 0..

(new) trans-
formed grid

VArray (Virtual Array) – Abstracts Data Storage
(Can be in file(s) or multi-D Array on memory; can also
be a subset or aggregation of (an)other VArray(s))

Example of GPhys’s associated coordinates
(GPhys) “temperature” (4D VArray)

(Grid)
(Axis) “x” (1D VArray)

(Axis) “y” (1D VArray)

(Axis) “z” (1D VArray)

(Axis) “t” (1D VArray)
(Array)

(GPhys)

(Grid)

(GPhys)

(Grid)

“lon” (2D VArray)

“lat” (2D VArray)

0..*

“coordinate variables”,
but can be simple indices

coordinate names must
be unique to support
subsetting by names

Supports “coordinates”
in CF convention

Supports transformed
grids, scattered data
points, etc etc

What is Ruby on Rails
http://www.rubyonrails.org/

• Web development framework in Ruby
• With RDBMS (Mysql, Postgres, SQL Server, SQLite etc)

• Strong prototyping (e.g. Model-View-Controller (MVC)
stucture)

• Comprehensive library (covering Ajax and Web service)

• Ruby-embedded html
suitable to use our Ruby library

• Has a private web server (Webrick); also runs on
Apache, lighttpd etc

One can personally run a web server anywhere with
arbitrary port

http://www.rubyonrails.org/

From “Understanding Rails MVC”:
http://wiki.rubyonrails.org/rails/pages/UnderstandingRailsMVC

http://wiki.rubyonrails.org/rails/pages/UnderstandingRailsMVC

Sister-server method

Register
as sister

User’s own
Gfdnavi

Use

Indirect
Use

(a) Basic case: available in LAS.
User can’t choose peers

(b) Gfdnavi: one can register
any peer by running a Gfdnavi

Use

Indirect
Use

Register
as sister

Register
as sister

P2P with directory server

Direct
Use

Indirect Use

Directory Server

Query
Server
List

Overlay network by P2P
P2P Net

Use

Indirect Use

Currently tested by C. Watanabe by using
Overlay Weaver (Java-based p2p library)
and Rails’ Action Web Service
– Decentralized p2p with distributed hash tables (DHT)

copy from old slides

GPhys
A class of gridded physical quantities

Takeshi Horinouchi （RISH, Kyoto
Univ.）

last revised: 2004/06/08

VArray
• Virtual Array. A class of Ruby (written in pure ruby), which

represents array data in GPhys
• A VArray object behaves as an array, but its contents can be

on various media: (case 1) simply a multi dimensional array
on memory (NArray), or data in a NetCDF file (in this case, a
file pointer is stored), or GrADS data; (case 2) It can also
represent a subset of another VArray or multiple VArrays tiled.

• Can have attributes as variables in NetCDF datasets
• In reality, NetCDF are handled by a subclass VArrayNetCDF

etc.etc.

a VArray
has 1 array (NArray, NArrayMiss,

NetCDFVar, or GrADSVar)

has 1..* (multiple) VArray (whole or subset)a VArray

Case 1

Case 2

subset mapping of VArray
• Always kept direct by compositing mappings, in order to

prevent long chains (see the figure below).
• Subset slicing (by such as va[0..10,3]) is done by subset

mapping, not by making actual data extraction, if not
explicitly specified otherwise. Therefore,
– Computationally efficient
– Suitable for writing in subsets of data in files.

• In other words, actual data cutting is deferred until needed –
to defer operations until needed is a policy of GPhys
construction

VArray

VArray

VArray

mapping f

mapping g

mapping f 。g

Structure of GPhys
• Consists of a grid (coordinates) and multi dimensional

array data
• Can conduct mathematical operations (a GPhys behaves

like an numeric array)

a GPhys has 1 array data (VArray)

grid (Grid)has 1

axis(Axis)has rank

coord.val.(VArray)

others (VArray)

has 1

has 0..

For your reference: Coordinates in NetCDF
dataset

• Variables that have same names as dimensions hold
coordinate values (locations)

• Weak point: this rule can be violated

var T
(4D; temperature)

var x
(1D; lon)

var y
(1D; lat)

var z
(1D; altitude)

変数 t
(1D; time)

dim x
(len=128)

dim y
(len=64)

dim z
(len=50)

dim t
(unlimited)

var Ps
(3D;

surface prs)

sample

Can construct GPhys objects along the trees

More on cooridnates
• 3 cases are prepared

– point sampling
– cell type
– simple sequence (though it’s not physical)

x x x x xpoint sampling

cell type
（Here, coordinate variables can represent either bound-
aries (|) or representative locations such as centers (x).

x x x x x

• For instance, how to integrate along an axis is known by the axis.
GPhys simply requests the integration to its Grid, and the Grid ask
it to the corresponding Axis. By default, trapezoidal formula is
used if point samples or cell boundaries. (can be changed by users)

• If NetCDF data are read, those types are configured if the
convention used supports such discrimination. (so far, convention
support is weak, though)

Tiling
• Data divided into “tiles” can be treated as one consolidated

GPhys object. Convenient to handle long time sequence
divided by periods (such as by years) or outputs from
parallel simulations on distributed-memory machines. Tiling
is done by VArrayComposite.

• Subsets can be handled (see the figure below)
• May be applicable to parallel simulations in future?
• So far, automatic configuration is available only for NetCDF,

by using an Array or Regexp (e.g., /data_x(¥d)y(¥d).nc/ for
data_x0y0.nc, data_x0y1.nc, data_x1y0.nc, data_x1y1.nc）

Subset specification
of tiled data

Big data handling
• Iterator to handle data too big to read on memory at

once.
– GPhys::IO.each_along_dims_write – the result also written

in file (since the result of operations is often big too.)
Another type of iterator is planned but yet to be implemented.

• Example:
– Without the iterator：

in = GPhys::IO.open(infile, varname)
ofile = NetCDF.create(ofilename)
out = in.mean(0) # now, the entire result is on memory
GPhys::IO.write(ofile, out)
ofile.close

– With the iterator, taking the last dimension to make a loop：
in = GPhys::IO.open(infile, varname)
ofile = NetCDF.create(ofilename)
out = GPhys::IO.each_along_dims_write(in, ofile, -1){ |in_sub|

[in_sub.mean(0)] # written in ofile each time
}

ofile.close

Units of physical quantities
• Handled by NumRu::Units (by E Toyoda)
• mlt,div,etc.: handled as should be
• add,sub： the units of the first term is inherited

– e.g., addition of [m] and [km] is done after multiplying
the second term by 1000. Warning is made if the units
are incompatible (in that case, no conversion is made).

• Introduced a scalar numeric class with units
UNumeric
– GPhys, VArray, and UNumeric recognize one another

(stronger to weaker in this order)
– Example: to multiply the Coriolis parameter with a

GPhys object u representing winds [m/s]:
f = UNumeric[1e-4,”s-1”]
coriolis_frc = f * u # then the units will be in m.s-2

Distributed objects using dRuby

• Data service to remote clients
– gphys-remote: a simple directory service (like

the anonymous ftp, directories and data (in
which GPhys objects can be defined) under a
top directory is made accessible to remote
hosts.

– gave (GUI): can connect to gphys-remote
server

	Gfdnavi: A tool to archive, share, distribute, analyze, and visualize geophysical fluid data and knowledge
	What is Gfdnavi
	Background
	Problems of Web-based database and analysis tools
	More on the analysis capability
	Visualization is not the goal
	Foundation of Gfdnavi
	Two fundamental libraries used to build Gfdnavi (open-source)
	GPhys (Gridded Physical quantity)
	Why do we use Ruby?
	Introducing Gfdnavi
	Overview
	Metadata DB
	User Interface
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Functionality
	Web service
	Network of Gfdnavi
	Summary
	Future Outlook
	fin
	GPhys (Gridded Physical quantity)
	Example of GPhys’s associated coordinates
	What is Ruby on Rails�http://www.rubyonrails.org/
	From “Understanding Rails MVC”:�http://wiki.rubyonrails.org/rails/pages/UnderstandingRailsMVC
	Sister-server method
	P2P with directory server
	Overlay network by P2P
	copy from old slides
	GPhys�A class of gridded physical quantities
	VArray
	subset mapping of VArray
	Structure of GPhys
	For your reference: Coordinates in NetCDF dataset
	More on cooridnates
	Tiling
	Big data handling
	Units of physical quantities
	Distributed objects using dRuby

