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(i)  2D nonrotating, stratified flow



Log-pressure coordinates for hydrostatic, compressible, flowx

log-pressure coordinates, pseudoheight zp = −H lnp

hydrostatic balance (appropriate for large scale, low-frequency waves)
(zg is geometric height; ρg is density in geometric coordinates)

∂p/∂zg = −gρg

constant H = RT∗/g, where T∗ is constant reference temperature

→ dz = −H
dp
p = gH

ρ
p dzg =

T ∗
T

dzg  T
T∗

− 1 < 0. 2

potential temperature θ = Tp∗/pκ

where p∗= constant (1000hPa) and κ = R/cp = 2/7
(specific entropy = cp lnθ + constant)

→ cpT = Πpθ where Πp = cpp/p∗κ is the Exner function



January climatology of T

190K < T < 300K



Log-pressure coordinates for hydrostatic, compressible, flowx

log-pressure coordinates, pseudoheight zp = −H lnp

hydrostatic balance (appropriate for large scale, low-frequency waves)
(zg is geometric height; ρg is density in geometric coordinates)

∂p/∂zg = −gρg

constant H = RT∗/g, where T∗ is constant reference temperature

→ dz = −H
dp
p = gH

ρ
p dzg =

T ∗
T

dzg  T
T∗

− 1 < 0. 2

potential temperature θ = Tp∗/pκ

where p∗= constant (1000hPa) and κ = R/cp = 2/7
(specific entropy = cp lnθ + constant)

→ cpT = Πpθ where Πp = cpp/p∗κ is the Exner function



Two-dimensional hydrostatic, compressible, nonrotating flow

(1) momentum
pressure gradient force per unit mass

− 1
ρg

∂p

∂x zg

= 1
ρg

∂p

∂zg

∂zg

∂x p

= − ∂φ
∂x

; φ = gzg

→ du
dt

= −
∂φ
∂x

+ F ; F is other (e.g. frictional) force per unit mass)

(2) mass continuity

mass element is ρg dx dy dzg =
pz
gH

dx dy dz

so log-p coordinate density is

ρ =
p

gH
→ ρ constant at constant p

pz = p0 exp − z
H

→ ρz = ρ0 exp − z
H

, ρ0 =
p0

gH

→ mass per unit area between coordinate surfaces z, z + dz constant,
so mass flux is nondivergent:

∇ ⋅ ρu = 0



(3) entropy budget

ρcp
dT
dt

−
dp

dt
= J → dθ

dt
= ρΠ−1J

(J is heating rate per unit volume)

(4) hydrostatic balance

∂zg

∂p
= − 1

gρg

∂φ
∂z

=
g ∂zg

−Hp−1∂p
=

gp

H
1

gρ g
= R

H
T

→
∂φ
∂z

= κΠ
H

θ

(ideal gas law)



Full set of equations

du
dt

= ∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

= − ∂φ
∂x

+ F

∂u
∂x

+ 1
ρ
∂ρw
∂z

= 0

dθ
dt

= ∂θ
∂t

+ u ∂θ
∂x

+ w ∂θ
∂z

= ρΠ−1J

∂φ
∂z

− κ
H
Π θ = 0

Two-dimensional hydrostatic, compressible, nonrotating flow



(ii) Internal gravity waves



2D internal gravity waves in a compressible fluid (simplest case)

inviscid, adiabatic (F = 0 = J
motionless basic state

θ = θ0z

φ0z = κH−1 ∫
0

z

θ0z′Πz′ dz′

small amplitude perturbations  << 1
[neglect terms O2]

∂u ′

∂t
+
∂φ′

∂x
= 0

∂u ′

∂x
+ 1
ρ
∂ρw ′ 
∂z

= 0

∂θ′
∂t

+ w ′ dθ0

dz
= 0

∂φ ′

∂z
− κ

H
Π θ′ = 0



∂u ′

∂t
+
∂φ′

∂x
= 0

∂u ′

∂x
+ 1
ρ
∂ρw ′ 
∂z

= 0

∂θ′
∂t

+ w ′ dθ0

dz
= 0

∂φ ′

∂z
− κ

H
Π θ′ = 0

All coefficients are functions of z, look for solutions

u ′

w ′

φ′

θ′

= Re

Uz

Wz

Φz

Θz

expikx + ly − ωt

− iωU + ikΦ = 0

ikU + 1
ρ

d
dz

ρW = 0

− iωΘ + W
dθ0

dz
= 0

dΦ
dz

− κ
H
ΠΘ = 0



Reduce to single equation for Φ:

ez/H d
dz

ω2

N2
e−z/H dΦ

dz
+ k2 + l2Φ = 0

where

N2z = κ
H
Π

dθ0

dz
=

g
T∗

dT0

dz
+ κ

H
T0

→ square of buoyancy frequency

Solution for constant N2:

φ′ = ReΦ0 exp z
2H

 expikx + mz − ωt

where

m = ± N2k2

ω2
− 1

4H2

or

ω = ±N k2

m2 + 1/4H2

Note that if m real:
(i) wave propagates in vertical
and
(ii) grows with height as

ez/2H ∼ ρ−1/2



Assume m2 ≫ 1/4H2 → 2π/m ≪ 4πH ≃ 100km
— good assumption for important atmospheric waves

ω = ±N k
m = ±N tanγ

(γ = tan−1k/m; nonhydrostatic case: ω = ±N sinγ
group velocity:

cg = ∂ω
∂k

, ∂ω
∂m

=.± N
m 1, − k

m

(i) → cg ⋅ k = 0 : group propagation is along
phase lines, at angles ±γ
(ii) continuity eq.→ k ⋅ u′ = 0 – fluid motions
are along phase lines
(iii) vertical components of group and phase
velocities have opposite signs.

γ

x

z

cg

bγ

c

(hydrostatic approximation
valid for ω ≪ N )



From localized source of frequency ω, waves form rays at angles
γ = sin−1ω/N to horizontal, with phase propagation across rays:

cg
cg

cg
cg

phase
phase

phase phase

x

z ω

LINK to MOVIE



http://dennou-k.gaia.h.kyoto-u.ac.jp/library/gfd_exp/



Waves in shear
(slowly varying background state, varies on height scale h ≫ m−1)

φ ′ == ReΦze ikx = ReΦ0zexp z
2H

 expikx + mz − ωt

Φz slowly varying [m|Φ0 | ≫ |dΦ0/dz|]. m = mz, also slowly varying.

Momentum flux is constant:

F0 = ρu ′w′ = − 1
2
ρ0

kmz
N2z

|Φ0z |2

→ |Φ0z |2 = −2
F0

ρ0k

N2z
mz

so

φ ′ =
2F0

ρ0

1

2
Re

N2z
k |mz |

1

2

exp z
2H

 expikx + mz − ωt

varying mean state density factor
(usually dominates)

− iωU + ikΦ = 0 → U = k
ω Φ = k

ω Φ0ez/2He imz

ikU + 1
ρ

d
dz

ρW = 0

− iωΘ + W
dθ0

dz
= 0 → W = iω

dθ0/dz
Θ = iω

N2

1
2H

+ im Φ0ez/2He imz

dΦ
dz

− κ
H
ΠΘ = 0 → Θ = H

κΠ
dΦ
dz

= H
κΠ

1
2H

+ im Φ0ez/2Heimz

u′w′ = 1
2

ReUW∗  = − km

2N2
|Φ0 |2ez/H



Waves in shear
(slowly varying background state, varies on height scale h ≫ m−1)

φ ′ == ReΦze ikx = ReΦ0zexp z
2H

 expikx + mz − ωt

Φz slowly varying [m|Φ0 | ≫ |dΦ0/dz|]. m = mz, also slowly varying.

Momentum flux is constant:

F0 = ρu ′w′ = − 1
2
ρ0

kmz
N2z

|Φ0z |2

→ |Φ0z |2 = −2
F0

ρ0k

N2z
mz

so

φ ′ =
2F0

ρ0

1

2
Re

N2z
k |mz |

1

2

exp z
2H

 expikx + mz − ωt

varying mean state density factor
(usually dominates)

(we’ll see this later)



φ′ =
2F0

ρ0

1

2
Re

N2z
k |mz|

1
2

exp z
2H

expikx + mz − ωt

cgz = ∓ km
N2

ū − c3 ≃ k
N
c − ū2

Typical values:

2π/k = 500km, c − ū = 30ms−1, N2 = 4 × 10−4s−2

cg,z ≃ 5ms−1

→ 0 to 100 km in 20000s ≃ 6 hr
→ weakly dissipated -100 0 100 200

0

20

40

60

z
(k

m
)



(iii) momentum transport



Zonal Means

Define (Eulerian) zonal mean for ax, y,z, t:
[periodic in x: ax + L, y,z, t = ax,y, z, t

āy,z, t = 1
L
∫

0

L

ax,y, z, t dx

eddy (wave) component

a ′x, y,z, t = ax,y, z, t − āy, z, t

by definition

a ′ = 0 ; ∂a
∂x

= 0 :

∂a
∂y,z, t

= ∂ā
∂y,z, t

a ∂b
∂x

= ∂
∂x

ab − b ∂a
∂x

= −b ∂a
∂x

x

z



Action of waves on the mean state
Mean momentum eq.:

∂ū
∂t

+ w̄ ∂ū
∂z

= Ḡ − u ′ ∂u ′

∂x
− w ′ ∂u ′

∂z

= Ḡ − 1
ρ

∂
∂z

ρu ′w ′ + u ′ ∂u ′

∂x
+ 1
ρ

∂
∂z

ρw ′ 

= Ḡ − 1
ρ

∂
∂z

ρu ′w ′

Mean continuity eq.:

∂u
∂x

+ 1
ρ

∂
∂z

ρw = 1
ρ

∂
∂z

ρw̄ = 0

→ w̄ = 0 everywhere, if zero on z =0 and

∂ū
∂t

= Ḡ − 1
ρ

∂
∂z

ρu ′w ′

Similarly,

∂θ̄
∂t

= ρΠ−1J̄ − 1
ρ

∂
∂z

ρw ′θ′

→ eddy fluxes of momentum, ρu ′w ′, and heat ρw ′θ′.

 u ′ ∂u ′

∂x
= 1

2
∂u ′2

∂x
= 0 



Eddy fluxes for steady, inviscid, adiabatic waves in shear

linearized equations

∂u ′

∂t
+ u0

∂u ′

∂x
+ w ′ ∂u0

∂z
+
∂φ′

∂x
= G ′

∂u ′

∂x
+ 1

ρ
∂ρw ′ 

∂z
= 0

∂θ′
∂t

+ u0
∂θ ′

∂x
+ w ′ ∂θ0

∂z
= ρΠ−1J′

∂φ′

∂z
− κ

H
Π̃ θ′ = 0

(1) eddy heat flux

Multiply 3rd eq. by θ′ and average:

θ′ ∂θ
′

∂t
+ u0θ′ ∂θ

′

∂x
+ w ′θ′ ∂θ0

∂z
= θ′J′

But θ′∂θ′/∂x = 1

2
∂θ′2/∂x = 0; if wave amplitudes are steady, θ′2 is steady in time,

for adiabatic eddies (J′ = 0) then,

w ′θ′ = 0

→ steady, adiabatic (J′ = 0) waves have zero vertical heat flux.



γ

x

z

cg

bγ

If phase tilt is as shown:

u’, w’, positively correlated

� momentum flux > 0
u’>0 

w’>0

u’<0 

w’<0



Momentum flux for steady, conservative (G ′ = J′ = 0) waves (detailed derivation)

First take mean of u ′ × eddy momentum equation:

u ′ ∂u ′

∂t
+ u0u ′ ∂u ′

∂x
+ u ′w ′ ∂u0

∂z
+ u ′ ∂φ′

∂x
= u ′G ′

→ u ′w ′ ∂u0

∂z
+ u ′ ∂φ

′

∂x
= 0

for steady conservative waves. But

u ′ ∂φ′

∂x
= ∂

∂x
u ′φ′  − φ′ ∂u ′

∂x
= 1

ρ φ′ ∂
∂z

ρw ′ 

= 1
ρ

∂
∂z

ρw ′φ′ − w ′ ∂φ′

∂z

= 1
ρ

∂
∂z

ρw ′φ′ + κ
H
Π w ′θ′

= 1
ρ

∂
∂z

ρw ′φ′

→ ρu ′w ′ ∂u0

∂z
+ ∂

∂z
ρw ′φ′ = 0

for steady, conservative waves.



From continuity, define streamfunction ξ such that

w ′ = −
∂ξ′
∂x

; u ′ = 1
ρ

∂
∂z

ρξ′ .

Then write momentum eq. (since ∂/∂t = −c ∂/δx

ū − c ∂u ′

∂x
+ du

dz

∂ξ′
∂x

= − ∂φ
′

∂x

→ ū − cu ′ + du
dz

ξ′ = − φ′

But

w ′ξ′ = −ξ′ ∂ξ
′

∂x
= 0

so

ū − cu ′w ′ = −w ′φ′

and

u − c ∂
∂z

ρu ′w ′ = 0

∂u ′

∂x
+ 1

ρ
∂ρw ′
∂z

= 0



Summary

steady, adiabatic, inviscid, waves (ū ≠ c):

w′θ ′ = 0 ; ∂
∂z

ρu′w′ = 0

momentum flux is constant — manifestation of wave activity conservation.

[NB: ∂ ρw′φ ′ /∂z ≠ 0, if ∂ū/∂z ≠ 0 → “energy flux” not constant]

Forcing of mean state:

∂ū
∂t

= Ḡ − 1
ρ

∂
∂z

ρu ′w′

∂θ̄
∂t

= ρΠ−1J̄ − 1
ρ

∂
∂z

ρw′θ ′

special case of the nonacceleration theorem:
mean flow is indifferent to the presence of steady, conservative waves
(unless waves influence Ḡ, J̄).



Sign of the momentum flux

c0 = ω
k

= ±N m2 + 1
4H2

−1/2

add mean flow ū:

c = c0 + ū = ū ± N m2 + 1
4H2

−1/2

cgz = k ∂c
∂m

= ∓Nkm m2 + 1
4H2

−3/2

= ∓ km
N2

c − ū3

Upward propagating wave: cgz > 0 → sgnkm = sgnū − c.

φ ′ = ReΦzexp z
2H

 expikx + mz − ωt

→ ρu ′w ′ = − 1
2
ρ0

km
N2

|Φz |2

→ sgnρu′w′ = −sgnkm = sgnc − ū

→ momentum flux is nonzero for m ≠ 0, and its sign is that of c − u
(“pseudomomentum rule”)



(iv) internal gravity wave breaking



Gravity wave breaking (of the simplest kind)
(Lindzen, JGR, 86, 9707, 1981; JAS, 42, 301, 1985)

— breaking favored at large z and/or small |c − ū |

Wave breaks by convective instability where

∂θ
∂z

= ∂θ̄
∂z

+ ∂θ ′

∂z
= ∂θ̄

∂z
1 +

∂θ′/∂z

∂θ̄/∂z
< 0

φ ′ = Re
2F0

ρ0k

1

2

− N2z
mz

1

2

exp z
2H

expikx + mz − ωt

∂φ ′

∂z
− κ

H
Πθ ′ = 0

∂θ ′

∂z
≃ Re

2F0

ρ0k

1

2 HN5/2

κΠc − ū2 −mz
exp z

2H
expikx + mz − ωt

∂θ′/∂z

∂θ̄/∂z
=

2F0

ρ0k

1

2 N

c − ū2 −mz
ez/2H ∼ N

c − ū3
ez/2H (for m2 ≫ 1

4H2
)

— breaking favored at large z and/or small |c − ū|



-100 0 100 200

0

20

40
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z
(k

m
)

ū

c > 0

breaking favored here
(ū − c small)
F > 0 for c − ū > 0
→ positive acceleration

breaking suppressed

|c − ū| large

breaking favored here
(|ū − c| small)
F < 0 for c − ū < 0
→ negative acceleration

c < 0 z

� Internal gravity wave breaking can reinforce zonal flow 

(we’ll see importance of this later)





Oscillating mean flow can be produced by two upward 

propagating waves of opposite zonal phase speed:



“QBO” in the lab

subcritical forcing



“QBO” in the lab

supercritical forcing
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