科学英語メモ

Contents

1  英語の文章表現

1.1  よく使う表現

〜平均した
zonally averaged, zonal mean ハイフン不要
latitudinally averaged ハイフン不要
time-averaged ハイフンがあることが多い
meanは相加平均にのみ用いる。東西平均は相加平均でも構わないが、緯度平均は重み付き平均が普通だと思う。
ある程度
to some extent
広範囲にわたって
over a wide range
〜に関して
in regard to …, with regard to …
〜の理由
the reason for
〜を用いて
by (the) use of, by using
の目的で
for the purpose of
〜に比例して
in proportion of
〜の条件で
under … condition
以上、以下、より多い、未満
500台以上:500 units or more
500台以下:500 units of less
500台より多い:over 500 units, more than 500 units
500台未満:below 500 units, less than 500 units, fewer than 500 units

1.2  日本語では同じでも、英語では意味が異なる表現

すなわち、つまり
namely はすでに(曖昧または間接的に)述べたものを名指ししたり、具体的にしたり、同じものであることを述べる(コメントする)。namelyの後に続く語は読み手が既に知っていて、推察可能な語が来る。namely の誤用は非常に多い。
that is は述べたことの説明を始めるために使われる
that is to say, in other words, which is, more precisely, specifically.
多少
somewhat は rather や quite と同じ、ある程度、幾分
more or less は「完全にではないけれど」という意味
(数が)ある程度の
several 数が大きいことを強調する
a few 数が小さいことを強調する。または中立。
適した
appropriate ふさわしさ、適切さ = suitable, fitting
adequate 量、長さなどがちょうどよい = sufficient, enough
目的
aim 目指している“方向”や“経路”。
goal 目指している“到達点”、“行き先”
purpose 行動を起こす“動機”や“理由”
objective 目指している“成果”
その結果として
as a result, consequently 状況に対して使用される。後者は副詞である。
as the result 具体的なもの(数式なども含む)に対して使用される
両者とも“因果関係”、“帰結”をあらわすのであって、“論理関係”の表現ではない。
〜である限り
as long as, on the condition that 0/1の条件に対して用いる。
as far as, to the extent that 様々な程度で存在する条件に対して用いる。
〜させる
cause, make 強制 = force, compel, constrain, require, necessitate, oblige, drive
allow, let 許可= make possible, facilitate, enable, permit, admit
変化する
vary 連続的な量の変化
different 2つの局面/状況の変化
change 変化の過程, 無生物が主語の場合は自動詞で用いる
shift 場所、向き、傾向の小さな変化 関数的依存性 → depends on, are functions of, evolve, fluctuate, dependence, evolution, fluctuation, dynamics
扱う
deal with ではない
等しい、同じ
equal “量”が等しい。ただし“量”とは演算の対象となりうるもの。
identical, equivalent, coincident, congruent, isomorphic 量でないものの同一性。
特に
especially, (particularly) “程度”に関して比較を行う表現で用いる。形容詞を修飾する。
in particular 議論の焦点をある場合や、例に合わせるために用いる。動詞を修飾する
specially 焦点をより具体的にする。動詞を修飾する。
例外
except for 例外の存在の重要さを強調する意味合いで使うことがある.
bar, excepting, but (for) それら例外を別にすれば一般論が成り立つという積極的な主張. exceptingは改まった語で, butはもっぱらnone, nothing, all, anyoneなどのあとで用いられる.
apart from, aside from 例外に言及はするがそれほど重要なものではないという意味合い.
意味
meaning 言葉、数学、論理などによる“表現”が意味するもの. その表現が直接表すもの(観念).
inplication 表現を含めてもっと幅広い“物事”が意味するもの. 表現が直接表すもの(観念)から推論されうるものも含む。
significance 気象学では“統計的な意味”を表す際に用いられることが多い。
connotation, import, purport, substance, inference, inferred meaning and implicit meaning.
単調に
monotone, monotonic, monotonically 数学用語の単調をあらわすのはこれら3語のみ。
四則演算の正しい表現
a + b : a is added to b, We add a to b, a and b are added, We add a and b.
ab : b is subtracted from a, We subtract b from a.
a × b : a multiplies b, b is multiplied by b, We multiply a by b.
a ÷ b : b divides a, a is divided by b, We divide a by b.
無視する
ignore, omit make no consideraton of が第一義。何かが考慮に入れられなかったり、扱われなかったり、存在していないと見なされていることを表す。omitは省略するの意味でよく使われる。
neglect make little consideration of が第一義。不完全に扱うというネガティブな意味を表す。
〜を基づいて(た)
based on 形容詞句なので、必ず名詞を修飾しなければならない。はっきりとした論理的つながりが必要。
on the basis of 副詞句で、一般に動詞を修飾するために用いられる。はっきりとした論理的つながりが必要。
in reference to, with respect to 参考にして using 利用して
一方で
on the other hand 文A. On the other hand, 文B. このとき AとBは同じ主題にたいして、異なる見方を示さなければならない。
and, but, while, whereas 一方でが本来意味するところは、これらの接続詞で表現可能。
または
or or は可能な「場合 (実際の場合・潜在的な場合・実情に反する場合)」の存在を示す。
and 全体が包含する分類を示すときは and である。
オーダー
(of) order 10 無次元量に対して用いる。形容詞である。
on the order of 10K 次元量に対して用いる。ofのあとには目的語が来る。
一部
part of 単数名詞 あるひとつの存在と見なされているものの一部を意味する。
some, several, certain, a few, a number of 集団の中の全てではないが複数の存在を意味する。
問題
problem 成し遂げるべき具体的な行為を伴う仕事。そのような仕事が要求される問い。 「研究のテーマ」「研究の対象」という意味でproblemは不適切。またproblemはsolveするもので、qustionにはanswerする。
qustion 解答、解決されていない問題点、題
研究
study, investigate, (analyze, examine, treat) 特定の何かを調べること
research 比較的広い範囲および長い期間にわたるプロジェクトの意味
その、この、あの + 名詞
the 現在の議論の範囲において、唯一のものに対してのみ使う。
this 議論の中、読者の目の前にあるものに対して使う。
that 議論から遠いところにあるものに対して使う。
従って、だから、ゆえに
therefore 直前の内容が後の内容をおこなう「理由」であることを指摘する。「そのために」= for this/that reason
hence 論理的な「自然な脈絡」 = as an inference, as a deduction, it is implied that, it follows that
thus = in this/that way, with this/that fact/situation/result
今までに
untill now 今終わったというニュアンスが強く含まれる。
up to now 今終わったというニュアンスが多少含まれる。
to now 今終わったというニュアンスがわずかに含まれる。
yet まだ継続している
立場から、観点から
日本語のこれらを正確にあらわす英語は存在しない。
point of view = manner of viewing, manner of thinkingが近い
view は眺めそのもの。viewpointは眺め主の立っている位置。
〜のとき
when, in the time that 時間的意味で用いる。具体的にその状況が実現した時同時に起こることを述べる(実現すること前提)。
in the case that, in the situation that, for the case that 場合の意味で用いる。
if 実現するかどうかは含意せずに、抽象的に因果的論理的つながりを挙げる。
(予報)精度
accuracy 観測と比較したときの精度
skill 基準としている(従来の)予報と比較したときの精度
協力、共同
collaboration 2つ以上のソースを基に最良の結果を目指すときに用いる。
coordination 最低限の結果を保証するために2つ以上のソースが必要なときに用いる。
移動する、移る
advect 移流。流れによる移動。
propagate 伝播。流れ以外による移動。
move 上二つの両方について言える。つまり、上二つが同時に起きている、またはどちらか判別できないときに用いる。
〜の
ニューヨークの支店:a branch in NewYork
モーターのベルト:a belt on the motor
天井のスプリンクラー:a sprinkler
物理の才能:a talent for physics
物理の実験:an experiment in physics
英語のレポート:a report in English
物理の本:a book on physics
問題の式:the equation in question
計画の変更:a change in the plan
寸法の違い:a difference in size
生産の減少:a decrease in production
部品の注文:an order for the parts
将来の計画:plans for the future
風邪の薬:a drug for a cold
10万円の小切手:a check for 100,00 yen
製品の情報:information on/about the product
価格の引き下げ:a reduction in price
顕微鏡での検査:an examination under a microscope
両者の違い:the difference between the two
三者間の協定:an agreement among the three parties
社長の秘書:a secretary to the president
能力
ability 可能性または積極的な実行力を意味し、不定詞を伴う。
capacity 受け入れ、収容、吸収する消極的な力を意味する。電気測定の最大出力は例外。
ほとんど
almost 程度を表す。動詞を修飾する。
almost all 量や数を表す。名詞の前におく。
most 副詞としては「最も」の意。形容詞としては「最も多い」「たいていの」の意。
大きい
big かさ、かたまり、重量、容積などが大きいことを示す。
large 寸法、限界、量、容量などを示す名詞に付けられる。
great 卓越、著名、至高などに用い、物質的なものには使わない。
2つ
both 2つのことを共に考える場合。 the two 2つのことを別々に考える場合。
反対に
on the contrary 他人の意見などに賛同できないことを表す主観的な反対。
in contrast 客観的に反対の事象や著しい相違を表す。

1.3  注意して使用すべき表現

辞書で用例を確認すること!

viewpoint
aspect
character
nature
characteristics
circumstances
situation
Then
thereforeの意味では使えない
especially
文節を修飾してはならない。→ In particular
abbreviate
省略する(omit, delete)ではなく、短く簡単にする(shorten, simplify)に近い— We abbreviate f(xi) as fi.
about
「およそ」の意では approximately のがふさわしい。また、「およそ」の意図するところをよく考える必要がある。
「〜について」の意ではdeal with, treat, investigate, studies などをつかう。ただしinformation, details, knowledgeのあとに置くのはよい。
according to
以下の3つが正しい用法で、これら以外の意味の「によって、によれば、に従って」の訳語としては使えない。どうせなら、下記の同義表現を用いるべき。また、「必ずしも全面的に信用してない」のニュアンスを持つ。
all, both
否定文や複数の名詞を修飾するときに誤解可能な文を生みやすい。
already
過去、現在完了、過去完了形の文では不要。現在形の文では“予想よりも、通常よりもはやく”の意味が込められる。
and so on, and so forth, etc.
including, such as, like などのような全てではないことを伝える表現をした場合は不要。
any
as for
多くの場合不要。→ with regard to, in regard to, as regards, regarding, with respect to and concerning
as well as
andと同義ではない。in addition to, and in additionの意味
aspect
抽象的/具体的な“ものの一面”を表す = features, characteristics, properties. “立場”ではない
at first, first
at first は時間 = in the beginning, at the beginning, initially
first は順番 = to begin with
at last
after a considerably long time の意味
available
それが利用されうる状態ですでに存在している(邪魔するものがない)ことを表す。
because of 名詞
この名詞は“理由を生み出すもの”であって理由(reason)そのものではない。→ for this reason
candidate
categorize, classify
前置詞をともなう用法に注意が必要
circumstance
common
compared with, compared to
compared が比較を表すので、comparedの前に来る形容詞・副詞は比較級や比較を意味する言葉にしてはならない。またcomparedは動詞を限定するものではない
contrast
必ず同種のものを対比する
degenerate
despite
前置詞であり、接続詞ではない。
difference+前置詞
difference of 量, difference in 概念, difference between 特定のもの and 特定のもの
different + 前置詞
different from 別個の物, different than 似てないもの. between や among とは使用しない。
difficult
何かの動作、行為を表す名詞、または動作、行為などと直接に関連していいる名詞を修飾する
discussion (discuss)
情報や概念を提供する目的の文章を意味し、何か結果が得られるものを導きだすための議論はdiscussion ではない。
dynamics
概念的な(学問分野のひとつとしての)力学という意味のときは単数として扱い、これ以外の力学的現象を表すときは複数形として扱う。ただし力学現象を記述する際は、より具体的な表現で記述するべき。
entire
複数の事物を集合的に描写するのではなく、あるひとつの事物を全体的に描写する場合に用いる。通常、単数形名詞を修飾する。
except +for
except for = with the exception of 上記の用法以外では他の前置詞を用いる。
feature
必ず数えられる事物を意味する。ある物や現象のnature や essence はひとつしかない。
for a moment, for the moment
for a moment は時間的な“一瞬” = for a short time。
for the moment は何かの存在や状態が一時的または予備的だということ「とりあえず」の意。= for the present time, fir the time being, for now, for the present.
however
副詞であり、接続詞ではない。よって文節をつなぐことはできない。
in spite of
意味的誤りと文法的誤りが多い。
instant, instance
instant は瞬間、時点。 instance は場合、例。
A is the key to B
Bは名詞、動名詞であり、to 不定詞 の形にはなれない。また to のかわりにofは使用できない。
earlier, before, previously, later, after
論文中で前述、後述の意味で、時間的表現をもちいることは避けるべき。
meanwhile
= at the same time, during that timeであり、 and, also, in addition, butの意味ではない。
more, less
副詞としてしようする場合、形容詞・副詞を修飾する。動詞を修飾するとmore often, less oftenの意味になる。また「さらに」「より」の訳語としては不適な場合もある。
no more, no longer
not only
文法的にonly と同様であり、not only は直前または直後の語を修飾するので、離れた位置にある動詞などを修飾することは出来ない。
notation
複数の記号、式などを表す集合名詞であり、通常単数形である。terminology, expression, symbol, definition, quantityの意味でもちいてはならない。
on the contrary
正しい用法は
(1) [否定文]. On the contrary, [肯定文] で両文は趣旨が一致しなければならない。
(2) [誰かの主観や、事物の可能性を述べる文]. On the contrary, [前文の内容とは反対の事実を述べる文]
であり、対比や対照の用途では使えない。
operate
「作用する」という意味の自動詞なので、∇ operates to u. は正しいが、We operate ∇ to uは誤り
opposite
形容詞、副詞、名詞、前置詞として使われるので、用法に注意が必要。またsignとの併用時に誤用が多い。
otherwise
形容詞または副詞なので、必ず何かを修飾する。
per
preはone、each、every の意味を含んでいるので、これらの語と併用してはならない。またperの目的語は無冠詞の可算名詞である。
possible
基本的に It is possible to 動詞 + 目的語. または It is possible for 意味上の主語 + to 動詞 + 目的語. の形で用いる。
possibilty
可能性が意図した事物に対して示されているか注意が必要。
reason
sameとas
same と as を使用する際は正しい用法を確認すること。また same に通常 the がつく。
saturate, saturation
数学的な意味で用いる際は注意が必要。
similar
as とは併用しない。similar + 名詞 + toとすると文意が不明瞭になる。通常 the はつかない。
since
第一義は「〜以来」であり、「だから」を意味していることが明白なときもsinceは必ず時間的ニュアンスを伝える。
such as, so as, such that, so that
これらはよく混同される。
such as 例示だが、「種」の物事が意識され、それゆえ例示された物は「代表例」のニュアンスをもつ
so as = for the purpose of, in such a manner that
such that = of a type that, with the property that. 名詞を修飾する。
so that = (1) for the purpose of, in order that. (2) with consequence that, and therefore (直前にコンマがつく)
then
副詞であり接続詞ではない。thus, therefore, henceの意味は持たない。
too + 形容詞
too + 形容詞 は冠詞と名詞の間には入らない。
where
関係副詞として場所にかかる。case, situation, exmapleにはかからない。また数学的な“点”の場合はat which を用いる。ただしシンボルの説明に用いられる。
equations, formulas, theories
既知の方程式、公式、理論は特定の状況/仮定のもとで作られたものなので、これらを拡張するさいは、注意が必要。
false alarm rate と false alarm ratio
false alarm ratio = the number of false alarms divided by the number of forecasted events.
false alarm rate (または the probability of false detection) = the number of false alarms divided by the number of times the event did not happen.
forcing
通常、予報方程式の(左辺を時間微分項のみにしたときの)右辺にある項を指す. ゆえに診断方程式では使えない。
frequency
“単位時間あたり”の場合にのみ用いる。そうでない場合は単にnumber of eventsとする。
be observed, be seen
直接観測したのでなければ、occurred や produce.
resolution
グッリド間隔(数)について述べる際は不適。なぜならば、グリッド間隔の大きさと、そのグリッドメッシュでresolve出来る現象のスケールは異なるから。→ grid spacing, grid increment, grid separation, grid interval.
state
sayよりも遥かに強い意味なので、sayの代用として使うことは不適。
theory
theoryは長い間試され、観測を説明し、未来を予測することが可能なアイデアや枠組み、概念モデルについて用いるべき。そうではない推論に対しては hypothesis が適当。
case
以下の場合は直したほうがよい。
in this case → here
in most cases → usually または具体的に頻度を表す
in all cases → always
in no cases → never
in many cases → many of 〜
a number of 複数, the number of 単数
a number of は many や several のがよい。
reaction
物理学の「反動」や化学の「反応」以外の意味はない。
recently
現在形とともに使用してはならない。現在完了か過去形で使う。

1.4  避けるべき表現

image
写真などの意味以外では使ってはならない。
from the standpoint
→ in connection with (the fact that) または in the light of (the fact that)
文頭のAnd
→ Moreover, Further
文頭のBut
→ However, Nevertheless
文頭のSo
→ Therefore, Hence
文末のtoo, however
使用してはならない
We had better
口語的 → It is best to
care about
使わない
anymore
口語的。誤用しやすい。
around
意味が沢山あるため、文意が不明瞭になる。→ near, approximately at, on /both/all/ sides of, on either side of, in the /neighborhood/region/vicinity/ of, surrounding, in the region surrounding, throughout the region surrounding, encircling, centered at.
at the same time
異なる2つの用法がある。
→ however, nevertheless
→ simultaneously
beside, besides
口語的。→in addition to, except for
by
は意味が多様なので、より意味が限定された表現を用いるべき。ただし、受動態の主語を表す場合は除く。
(by) using, with, (by) employing, through, in terms of, by applying, (by) utilizing, (by) making use of, through use of, by means of, with the help of, with the aid of, from など。
change
誤用が多い。
関数的依存性 → depends on, are functions of, evolve, fluctuate, dependence, evolution, fluctuation, dynamics
無生物が主語の場合は自動詞で用いる
clue
口語的。意味が不正確。
consideration
意味が多様であいまい。
→ thinking about, looking at
→ discussion, survey, account
→ taking into account
→ a fact of factor to be considered
→ study, analysis, treatment
deal with
→ analyze, consider, study, investigate, discuss
depending
構文的な誤用が多い。
each other
不要。ただの強調語であることがほとんど。
from now, from now on
不要の場合や誤用が多く、口語的。
hard, hardly
誤用が多く、口語的。
have to do with
have a relation to, have a connection with という意味で用いるのは口語的。
have to, must と only の併用
意味が曖昧になる。
hint
意味が曖昧で口語的。
information of A
所有 A’s information の意味のときはinformation possessed by, information contained in.
その他の場合、of は about, regarding, /with/in/ regard to, concerning, pertaining to, with respect to, in reference to, in relation to, relating to, in connection /to/with/, pertinent to, relevant to
またinformation を know と併用するのは誤り。不可算名詞である。
issue
「問題」「論点」の訳語としては誤り。より限定された意味のある言葉に変えるべき。
just
意味が多く、口語的。 → only, simply, recentlyなど。
knowledge
意味が広い。→ information, understanding. 不可算名詞である。
largely
2つの意味がある。→ greatly, for the most part, mainly, by and large
nothing but
誤用が多いし、正しい用法を使う機会はまれ。
notion
→ idea, thought, concept, conception
nowadays
nowadaysは「傾向」「流行」という意味を含む → now, today, at the present time, at this time, presently, currently.
plural
文法用語して以外は使わない → multiple
popular
誤用が多い。正しい意味でも「社会全体」にたいして用いられるのが普通。→ common, conventional, customary, general, generic, main, normal, ordinary, predominant, prevailing, prevalent, standard, typical, usual.
real
数学の「実数の」という意味以外では使用しないほうがよい。
really
かなり口語的。→ actually, truly, certainly, undoubtedly, indeed, in fact, genuinely, very, quite, greatly, considerably, substantially, significantly, utterly, altogether, extremely, extensively, to a great extent.
remarkable
珍しいという意味が含まれる → worthy of note, worth noting, notable, interesting, important, significant, noticeable, observable, marked, conspicuous, prominent, pronounced.
とてもの意味でのso
口語的 → very
so far
口語的で多義。→ up to the present, to this time, to this point, yet, previously
traditional
科学論文には不適。 → conventional, ordinary, usual, established, orthodox, familiar, regular, normal, standard, customary, existing, past, previous.
yet
誤用が多い。強調のニュアンスがある。
activity
あいまで、不正確。文脈に応じて → number of cloud-to-ground lightning flashes, total flash rate, number of supercells, frequency of hurricane passage, etc.
causing
→ associated with
chaos, random
非常に限定された意味を持っている。→ poorly organized, disorganized.
convective initiation
→ convection initiation
convective temperature
correlate, correlation
数学的な意味でのcorrelationに限る。→ relate, relation, correspond
datum point
一点でもdata pointでよい。
(モデルの出力結果としての)data
モデルの出力結果に対してdataが使われることを嫌う人がいるので、observationの結果のみdataと呼ぶべし。
day
日付を表すときは→ date
紛らわしい日付表記
→ “1200 UTC 10 December 1994” が標準
divergence/convergence causes vertical velocity
水平発散/収束と鉛直流速は連続の式で関係しているが、これは予報方程式ではなく、診断方程式なのでcauseとは言えない。
fog burning off
科学的に正しくない。
greenhous effect
本当の温室は、“大気の温室効果”のような効果で内部を暖かく保っているわけではない。
温室効果を説明するためのblanket
大気の温室効果の仕組みはブランケットの効果の仕組みとは異なる。—the surface of the Earth is warmer than it would be in the absence of an atmosphere because it receives energy from two sources: the sun and the atmosphere.
northward, southward
→ poleward, equatorward
positive/negative vorticity
→ cyclonic/anticyclonic vorticity
numerical prediction
→ dynamical prediction らしい。numerical prediction はstatistical predictionも含む。
overrunning
severe storms
→ severe convective storms.
vertical motion
→ vertical velocity
why
→ how. 「なぜ」を探求するのは哲学や神学であり、科学は「どのようにして」を扱う。
methodology
→ methods. methodologyは the study of methods の意味にとられかねない。
and/or
誤解されることが多い。別の表現で書き変える。
could
「出来た」の意味はなく「過去に出来る能力があった」の意味になるので、「出来た」は単に過去形にする。
fact
証明可能な事柄のみを意味し、判断した事柄には用いない。
→ effect, hypothesis, observation, value, result, phenomenon, finding, similarity などより具体的な言葉に変える。
同様にthe fact that, of the fact that も不要。
matter
あいまいな語 → affair, question, request, trouble, delay など正確な語を用いる。
well-known
→ widely known, often adopted/used
while
第一義「〜をしている間に」以外では使わない。「一方で」を使いたいときは whereas

1.5  誤った表現

call A as B
→ call A B ここでBはAの名前
A equal to B.
→ A is equal(形容詞) to B. A equal(他動詞) B.
operate P to f
operateは「作用する」という意味の自動詞なので∇ operates to u. は正しい。また適切な前置詞に注意すべき。
cold/warm temperature
→ low/high temperature
in details
→ in detail
the followings
→ the following 複数でも s を付けない
inside of
→ inside
very, more, less, extremely, mildly+uniqueなどの絶対的な語
これらの副詞で修飾出来ない。
絶対的な語: equal, false, final, flat, horizontal, impossible, initial, obvious, perfect, permanent, safe, straight, supreme, total, true, unanimous, vertical
A and/or B
便利なようで、誤解されかねない。→ A or B or both

1.6  英語論文で見られる良くない表現

以下は見延先生のページからの引用です.

set up
「落とし入れる, 嵌める」という意味があるせいか, あまり使われないような気がする。
then
「次ぎに」くらいのつもりで使う例が多いが, 厳密に時間的に後にあることにしか使えない。
exist
日本語は名詞主導の言語なので, 「. . . (名詞)が存在する」という表現が多い. しかし, この表現は動詞主導の言語である英語では多くの場合にはまず使えない. 特に「...という現象が存在する」とは全く言えない. 動詞主導の英語ではoccurなどを使う(単純な置き換えではダメ)のが良さそうである。
there is
上と同じく there is variability などとはできない.
could
could は仮定法過去すなわち, 「. . . できたのにそうはしなかった」と紛らわしいので日本人は使用しない方が無難. 例えば, You could call me yesterday.と彼/彼女から言われたら, 「あなたは昨日私に電話をかけることができた(能力を有していた). 」という意味ではなく, 「あなたは昨日わたしに電話をかけれたのに, かけてくれなかったじゃない!」のように多分に非難や残念な気持ちが入っている.
懸垂分詞
分詞節の主語が主節の主語に一致しなくてはならない.
Considering smaller spatial scale of the 2nd mode, oceanic adjustment driven by surface wind is important. この場合, Considering …, we …と主節の主語はweとならなくてはならない. そうでなくては, considering の主語と主節の主語が不一致となるためである. このように主節の主語と分詞節の意味上の主語とが一致しないことを, 懸垂分詞と呼び, ほとんどの場合に避けなくてはならない. 私が知る限り唯一の例外は, using である. Using の場合, 主節の主語は人でなくても良いようである(そういう用例が多数見られる). おそらく, using は慣用句的に使われ意味上の主語の機能が失われているのであろうと推測している.
非制限的用法の関係代名詞節の前後にカンマ’,’が無い
関係代名詞には, 制限的用法と非制限的用法の二つがある.
制限的用法とは関係代名詞節がなくては文の意味が成り立たない場合で, 例えば We conduct a experiment that identify the response of the system to the external forcing. では, We conduct an experiment. だけでは文として意味を成さないことが分かるだろう.
一方非制限的用法の例は, We examine the interannual variability of the Pacific Ocean, which is one of the action of the center associated with El Nino. で, which 以下は付加的な情報を示しているだけであり, なくても文の主たる情報は伝わるのである. 多くの場合制限的用法ではthatを, 非制限的用法ではwhich を用いる. まれにnative speaker に制限的用法でもwhich に直すように求められることがあるが, その理由は不明である.
文がAndかButから始まる
And, But から始めるのは口語的なのでダメ.
and で結ばれる前後の節の並列性が低い
 and以外を使うか, 並列性を高める.
節の区切りにカンマがない
A is B and C is D. などでは, A is B, and C is D. と節(この場合は等位節)の前にカンマが必要.
式だけの行の末尾にカンマ’,’かピリオド’.’が無い
英語では式も文なので, カンマかピリオドが必要.
式だけの行の次の行がWhereから始まる
where が正しい.
maximum amplitude
maximal amplitude が正しい.
spectrum peak
spectral peak が正しい
冠詞
northern hemisphere
the Northern Hemisphere (NとHが大文字, theがつく)
Northern and Southern Hemisphere
Northern and Southern Hemispheresが正しい
段落の最初の文がインデントされていない
必ずインデントする.
文頭のGenerally
In general, が正しい.
文頭のParticularly, Especially,
In particular, が正しい.
文頭のAssociated with
ほとんどの場合, In association with が正しい.
Fig. 1, 2
Figs. 1, 2 が正しい.
Fig.1
Fig. 1: 英文では省略形を示す際にピリオドを置く. 従ってピリオドの後に空白が無いと, その非省略形はFigure1という1単語になってしまう.
Fig. 1(a)
Fig. 1a が正しい.
括弧の前に空白が無い
括弧の前には必ず空白をつける.
名詞の結合のし過ぎ
upper water temperature grid data. 名詞を2語つなげる使用はOK(grid data, water temperature). 3語になるとちょいと苦しい, 場合によってはハイフンを使う方が良い, (例 sea-surface temperature).
firstly
first が正しい.
grid data
gridded data が正しい.
on the other hands
on the other hand (handが単数)
他動詞と自動詞
ここで我々はどうこうした. のここでのHere
Nowが正しい. 数式のあとの「ここでv は流速」のときはHere.
in mid-latitude
in mid-latitudes が正しい.

参考文献一覧

2  英文法

2.1  名詞 (Nouns)

名詞の最も大きな分類は「固有名詞」と「共通名詞」(いわゆる普通の名詞)である。

共通名詞は「可算/不可算」と「具象/抽象」の分類がある。
具象-可算名詞はさらに「個体/集合」の分類がある。

不可算名詞は複数形にならず、限定されなければ the がつかない

なお名詞を「普通・集合・固有・物質・抽象」の5つに分類するのは日本の学校文法教育独自の分類で、ことばの意味に基づく分類であって、文法的な分類とは異なる。

2.1.1  具象-可算-個体名詞 = 普通名詞

一定の形や区切りがあって、数えられるものに付けた名称で、同じ種類の物に共通して適用出来るもの。

2.1.2  具象-可算-集合名詞 = 人や生物の集合名詞

人や生物の集合体を表す名称。

2.1.3  具象-不可算名詞 = 事物の集合名詞 and 物質名詞

「事物(非生物)」の集合体を表す名称。—clothing, furniture, machinery, mailなど

物質に付けた名称。

2.1.4  抽象-不可算名詞 = 大部分の抽象名詞

概念や感情、過程あるいは行為などの形のない抽象的な意味を表す名詞。無冠詞単数形で用いられることが極めて多い
性質・状態や心的状態・出来事や行為。

2.1.5  抽象-可算名詞 = ごく一部の抽象名詞

difficulty (難事) のようなごく一部の抽象名詞.

2.1.6  注意すべきこと

可算/不可算は書き手(文脈)がイメージしていることに左右されうる。
例えば、物理概念としての temperature (気温)は不可算だが、様々な気温の値を指してtemperaturesなどと可算名詞として扱うこともある。

また、可算/不可算に加え、theがつく場合でそれぞれ、意味が異なる語もある。
the atmosphere —地球の大気
atmospheres —地球以外の天体の大気
atmosphere —雰囲気(という概念)

2.1.7  複合名詞

全体でひとつの名詞の役割を果たすもの。

1語になったもの

bookcaseなど

ハイフン( - )でつないだものも1語として数えるが、最近はハイフンでつなげる名詞-名詞は少ない。

2.1.8  2語の複合名詞

前の名詞が後ろの名詞を修飾する形容詞的な役割をはたす。前の名詞は単数形で記す(常に複数形の名詞は除く)。

3語以上の名詞を並べた複合名詞は好ましくなく、 space-age technology のように形容詞的な役割をはたす語をハイフンでつなぐ方が望ましい。

2.1.9  名詞の単複

単複の使いわけ
注意すべき複数形の作り方

2.1.10  所有格

所有格の作り方
所有格と of + 名詞

意味上も文法上も同じだが、以下の傾向で選択される。

NASAの本によると、無生物名詞の所有格には -’s も of も使わず、名詞+名詞の2語複合名詞で表すのがよいらしい.

注意点

日本語の「〜の・・」が「-’s 」や「 of 」で表現できるとは限らない。

2.2  冠詞 (Articles)

2.2.1  不定冠詞 (a, an)

不定冠詞 a, an は、one(1つの)から出来た語で、不特定のものを指し、原則として可算名詞の単数形につく。

主な用法

an は発音が母音で始まる語の前に着く。頭文字からなる略語でも同じ。—an SOS(エスオーエス), a NASA(ナサ)

無冠詞の単数形名詞は必然的に不可算名詞であり材料などを表す物質名詞になる。

2.2.2  定冠詞 (the)

定冠詞 the は, thatからきたもので, 特定のものを指す。

主な用法

2.2.3  冠詞相当語

次の語は冠詞に相当する語であり、同時に冠詞は使わない。

2.2.4  2つ以上の名詞が and や or で結ばれている場合

誤解の恐れがなければ、一般に最初の名詞にだけつければよい。

2.2.5  無冠詞・冠詞の省略

多くは慣習によって無冠詞化した。

記号リスト・図のキャプション・タイトルでは冠詞を省略する場合がある.

2.3  接続詞 (Conjunctions)

語と語、句と句、節と節などを結びつける語。

2.3.1  接続詞の種類

等位接続詞
文法上対等の関係にある語と語、句と句、節と節などを結びつける接続詞。and, but, or など。
従位接続詞
主節従位節を結びつける接続詞。従位節には名詞節と副詞節がある。
接続副詞
however, soなど、接続詞的な機能をはたす副詞。(文法上は副詞だが、ここで「接続詞」といったときんは接続副詞も含める。)

2.3.2  等位接続詞

and

連結を示す。

nor
both A and B
not only A but (also) B
neither A nor B
but

反意・対立を示す。口語以外では文頭では用いない。

or

選択を示す。

2.3.3  接続副詞

節と節との間にはセミコロンを置くのが正式。

besides, also, moreover

この順で堅い言い方になる。

then
however
nevertheless
still, yet
else, otherwise
so, therefore, consequently, hence
that is (to say), namely
for instance, for example

2.3.4  従位接続詞

名詞節を導く接続詞

that
whether, if
lest, but that

時・場所の副詞節を導く接続詞

when
whenever
while
as
before
after
till, until
by the time (that)
since
as soon as, no sooner 〜 than, hardly/scarcely 〜 when
directly, immediately
once
every time, each time
where

原因・理由の副詞節を導く接続詞

because, since, as

目的・結果の副詞節を導く接続詞

so that, in order that
in case
for fear (that), lest
so 〜 that …
such 〜 that …
… so that, 〜

条件・譲歩をの副詞節を導く接続詞

unless
in case
but that
suppose, supposing
provided (that), providing (that)
granted (that), granting (that)
as long as, so long as
although, though
形容詞/副詞+ as + S + V
if, even if, even though
when, while, whereas
whether 〜 or …
No matter + 疑問詞

副詞節を導くその他の接続詞

as
as if, as though
as
according as 〜
as/so far as 〜
as long as, so long as
except (that)

2.4  倒置

狭義には主語と動詞の順が逆になることを倒置というが、ここでは、語順が基本文形と異なるものすべてのことを指す。

2.4.1  文法上、倒置する構文

2.4.2  強調や文のバランスを整えるための倒置

SVC → CVS
The children who managed to leave the country are lucky.
Lucky are the children who managed to leave the country.
ただし、主語が代名詞の場合は CSV の順にすることが多い。
They are luckey. → Lucky they are.
SVO → OSV
I would never believe that sort of story.
That sort of story I would never believe.
ただし、目的語に否定語がつくと、OVS の順になる。
Not one of these paintings would I ever wish to buy.
進行形の倒置
A stream whose water is so clear that one can see the shape and color of every stone on the bottom is running through the field.
Running through the field is a stream whose water is so clear that one can see the shape and color of every stone on the bottom.
受動態の倒置
A new law that forbids employers to reduce their employees’ wages on the basis of their health problem is required.
Required is a new law that forbids employers to reduce their employees’ wages on the basis of their health problem.
SVOC → SVCO
I’ve named the new machine developed by the group of scientist who have been trying to build a robot with artificial intelligence Betty.
→ I’ve named Betty the new machine developed by the group of scientist who have been trying to build a robot with artificial intelligence.
使役動詞 SVO+do → SV+do+O
I failed to make the new machine developed by the group of scientist who have been trying to build a robot with artificial intelligence run.
→ I failed to make run the new machine developed by the group of scientist who have been trying to build a robot with artificial intelligence.

参考文献一覧

3  句読法

3.1  ピリオド (Period)

ピリオド (.) は分離の記号。その主な機能は「独立した考えを分離する」こと。

ピリオドは分が主語と述部で完全に完了した後でのみ、使われる。 見出しや箇条書きの項目などで完全な独立文でないものにはつけない。 (箇条書きでも独立文になってる場合はつける。)

ピリオドの後にはスペースを2つ入れる。最近のワープロソフトでは1つでもよい。

LATEXだと小文字の後ろについたピリオドのあとのスペースは、広めにスペースになり、 大文字の後ろについたピリオドのあとのスペースは通常のワード間の広さのスペースになる。 よって、et al. のあとのスペースは広くとられてしまうので、et al.~として 字間を調節する。同様に文末が大文字の場合は、...is called NASA\null. とする。

3.2  コンマ (Comma)

コンマ (,) の機能は文の要素を「分離すること」と「囲い込むこと」である。 技術英語では不必要にコンマを付けすぎないように注意したい。

コンマの後にはスペースをひとつ入れる。

3.2.1  分離のコンマ

3.2.2  囲い込みのコンマ

囲い込む対象の前後に付ける。ただし、後ろのコンマは場合によってはピリオドやコロン、セミコロンなどになる。

3.2.3  慣用的用法

3.2.4  他の句読点とコンマの位置

3.2.5  制限的か非制限的か

制限的

非制限的

どちらにもなる

3.3  コロン (Colon)

コロン (:) の機能は「リスト、節、引用文」を分離または導入することである。 コロンのあとに再びコロンを使用することや大文字を使用することは望ましくない。

コロンの前にはスペースを入れず、後にはスペースをひとつ入れる。
表中にコロンを用いる場合も、コロンの前に空白を作ってはならない。

後述の慣用的な用法を除き、コロンは完全な独立文の後のみで使われる。 とくに動詞または前置詞とその直接目的語の間では使ってはならない。

コロンは such as, that is, for example のような慣用的挿入句の後では使用しない。 なぜなら、コロン自体がこれらの慣用的挿入句と同じ役割を有しているから。
誤用例:Microwave instruments are used for remote sensing of environmental variables such as: sea ice, soil moisture, and surface wind speed.
修正例:Microwave instruments are used for remote sensing of environmental variables, such as sea ice, soil moisture, and surface wind speed.
修正例:Microwave instruments are used for remote sensing of environmental variables: sea ice, soil moisture, and surface wind speed.

3.3.1  リストにおけるコロン

3.3.2  節におけるコロン

3.3.3  コロンの慣用的用法

3.3.4  他の句読点とコロンの位置

コロンは丸括弧の後、引用符の後にうつ。
“ theory”: (monkey):

3.4  セミコロン (Semicolon)

セミコロン (;) はコロンよりも弱い結合(強い分離)を表す。

1つの文にすると長すぎ、2つの文にするには内容が密接な場合に用いる。

3.4.1  等位節のセミコロン

3.4.2  説明句と説明説のセミコロン

3.4.3  他の句読点とセミコロンの位置

セミコロンは丸括弧の後、引用符の後にうつ。

3.5  引用符 (Quotation Marks)

引用符 (“ ”と ‘ ’) は「別の情報源や直接話法から引用された語」や「まわりの文と区別する必要のある語」を囲い込む。 ただし、過度に多用されると、見づらくなる。

通常、二重引用符 (“ ”) を用い、単一引用符 (‘ ’) は二重引用符のなかでのみ用いる。
なお、LaTeX では前側の引用符 (“) は`` (シフト+@キー)で、後ろ側の引用符は (”) '' (シフト+7キー)である。

3.5.1  区別を必要とする語句に使う引用符

文意を明確にするため、本文から区別する必要のある語句を引用符で囲い込む。
これはイタリック体でも代用できる。

3.5.2  他の句読点と引用符の位置

3.6  丸括弧 (Parentheses)

丸括弧 ( ) は非制限的要素あるいは挿入要素を囲い込むためにつかわれる。

左括弧 ( の前にはスペースを入れる。閉じ括弧の後ろにはピリオドやコンマが後ろにある場合を除いて、スペースを入れる。

3.7  ハイフン (Hyphen)

ハイフン (-) は語をつなぐ機能がある。ただし、恒久的な複合語は1語になる傾向がある。

なお、ハイフンの前後にスペースは入れない。

3.7.1  分綴のハイフン

行末の単語が途中で切れる場合にハイフンでつなぐ。ただし語は音節間でのみ分けることができるので、勝手に切手はいけない。
LaTeXだと自動でやってくれる。
分綴に関しては他にも細かな規則があるが、LaTeXは全部自動でやってくれるので、ここには記さない。

3.7.2  接頭辞のハイフン

3.7.3  接尾辞のハイフン

3.7.4  複合語のハイフン

常用複合語のハイフンの有無は辞書で確認しなければならない。

3.8  ダッシュ (Dash)

ダッシュには印刷上 emダッシュ(—)とenダッシュ(–)の2種類がある。emダッシュは文字 M と同じ幅を有し、enダッシュは文字 n と同じ幅を有する。
単にダッシュと言った場合はemダッシュをさす。

ワープロソフトではemダッシュは連続した2つのハイフンで表現され、enダッシュは1つのハイフン(つまり上述のハイフンと同じ)で表される。
LaTeXではemダッシュは連続した3つのハイフン---で、enダッシュが連続した2つのハイフンで--で入力できる。

ダッシュの前後にスペースは入らない。

3.8.1  emダッシュ

ダッシュは文の要素を囲い込むあるいは分離するために使われる。
ダッシュはたまに使えば、効果的だが、多用すると文の明確さを失ってしまう。

囲い込みのダッシュ

囲い込みのコンマと同じ用法で使用することができる。コンマが多用されて読みにくくなる場合に使う。

囲い込みのコンマ、ダッシュ、丸括弧は違いは

分離のダッシュ

文の後で for example, that is, namelyなどで説明や要約等を続ける場合、[〜, that is, ...] < [〜; that is, ...] < [〜—that is, ...] の順で強調の度合いが強くなる。

ダッシュの慣用的用法

3.8.2  enダッシュ

enダッシュは慣用的用法で用いられる。

enダッシュはマイナス記号と同じものである。
ただし LaTeXでは Mathモード内では-でマイナスが出力される。すなわち、Mathモード以外でマイナス記号を 出力するときは--と入力する。

3.9  スラッシュ (Slash)

スラッシュ (/) は分数, 毎を表す以外には and/or のようにスラッシュの使用が標準となっている場合のほかは使用しないほうがよい。 これはスラッシュの意味が厳密に定義されてないからである。

スラッシュの前後にスペースは入れない。

3.10  イタリック体 (Italics)

イタリック体 (italics) には強調する要素を文章から区別するために用いられる。

3.10.1  強調のイタリック

多くの場合はイタリックにして強調するよりも、構文で強調した方がよい。
また、文全体をイタリックにすることは避けるべきである。

3.10.2  専門用語のイタリック

主題であるキーワードや専門用語を定義するのに最初に使用するときには、イタリック体がよく使用される。

3.10.3  差別化のイタリック

その語の意味を表すのでなく、その語自体をあらわすときにイタリックが使用される。

3.10.4  記号のイタリック

省略。

3.10.5  句読点のイタリック

句読点はそれが属する要素の書体にあわせる。
これらの句読点はローマン体
For light amusement he turns to the Principia Mathematica!
How can they be sure that the temperature was in fact rising?
The letters a, b, and c are often invoked as being fundamental.
I had yet to consider the central thesis of Malthus’s Essay: the imperfectibility of humankind.
これらの句読点はイタリック体
The Beatles’ Help! was released long before the heyday of the music video.
I love Eats, ShootsLeaves, but I would have preferred to see “and” in the title rather than the ampersand—which would allow for a serial comma after “Shoots.”

3.11  スペース (Space)

3.12  番外編:日本語横書き文書の句読点

日本語横書きの文書での句読点は

  1. カンマ「,」と まる「。」:文科省基準 (e.g., 検定教科書、日経サイエンス)
  2. カンマ「, 」と ピリオド「. 」:理科系の論文に多い (e.g., 天気、専門書)
  3. てん「、」と まる「。」:マスコミ基準 (e.g., 新聞、雑誌)

の3つの様式が存在する。

上のように書くと、1. の文科省基準が「正式」のような感じを受けるが、実際には政府刊行物でも 基準 3. で 書かれているものがあり、統一されてない。

これらの使われ方に関して調査・考察した 九州大学大型計算機センター・研究開発部の渡部 善隆氏の “横書き句読点の謎” が面白い。

普段、最も目にするのは 基準 3. じゃないかと思う。おそらく、 日本語入力システムのデフォルトが、「てん」と「まる」になってるからじゃなかろうか。

参考文献一覧

4  数学・数式の展開

4.1  対応語句

4.1.1  動詞

定義する: define
AをBで置き換える: replace A with/by B
AをBという記号で表す: designate A as/by B
表す, 与える: express, give, provide
組み合わせる: combine
消去する: eliminate
適用する: apply
計算する: calculate, compute
〜に等しい: is equal to 〜
〜と同様である: is similar to 〜
考える: consider
一般化する: generalize
整合する, 対応する, 一致する: coincide with
無視する: neglect
A を 式(1) に代入する: insert A into (1), substitute A into (1)
A の代わりに B で置き換える(代用する): substitute B for A
展開する: expand, develop
導入する: introduce
得る: obtain
適用できる, 成り立つ: hold
〜と関係する: is related to 〜
〜のことを言う: refer to 〜
最適化する: optimize
Δ x → 0 のとき f(x)に収束する: converge to f(x) as Δ x → 0
A + B = C: A plus B equals C. A and B make/are C. The sum of A and B is C. Add B to A.
A – B = C: A minus B equals C. B from A leaves C. The difference of A and B is C. Subtract B from A.
A × B = C: A times B equals C. Multiply A by B. A multiplied by B is/makes C.
A2 = B: A squared is B.
AとBの積: the product of A and B
A ÷ B = C: A divided by B equals C.
AとBの商: A divided by B, the quotient of A and B
yxで微分する: differentiate y with respect to x
yxによる偏微分: partial derivative of y with respect to x
積分する: integrate
xaからbまでの積分: the integral from a to b of x
xn乗する: raise x to the nth power
xyの関数である: is a function of x and y
方程式を解く: solve an equation
式を再整理する: rearrange the equation
〜に比例する: is in proportion to 〜, is proportional to 〜
〜に反比例する: is in inverse proportion to 〜, is inversely proportional to 〜
10−4のオーダーである: is of the order of 10−4
高次の項を無視する: ignore/disregard the higher order terms
Aの上限(下限): an upper (lower) bound on A
その方程式の数値積分: numerical integration of the equation
その方程式の解: the solution of/to the equation
式 (1) の形の〜: of the form (1)
方程式系を構築する: develop a system of equations
仮定に反する: contradict the assumption

4.1.2  名詞

関数: function
有効数字: significant figure
変数: variable
( ) 括弧: parentheses
括弧: brakets
{ } 括弧: braces
分数: fraction
分母: denominator
分子: numerator
被積分関数: integrand
約分: reduction
比例定数: constant of proportionality
多項式: polynomial
境界条件: boundary condition
初期条件: initial condition
差分法: finite difference method
有限要素法: finite element method
行列: matrix
行列式: determinant
固有値: eigenvalue
連立方程式: simultaneous equations
変分原理: variational principle
最小二乗法: least-squares method
数値計算: numerical calculation
シミュレーション: simulation
数値積分: numerical integration
不等号の向き: sense of the inequality

4.2  例文集

4.3  Tips

f(x) = g(x) = sinx      (1)

この場合、式 (1) は複数とする。すなわち eqations (1) とする。

参考文献一覧

5  地球物理関連

5.1  対応語句

5.1.1  動詞

Aを一ヶ月間平均する: average A for a month

5.1.2  名詞

10 m/s の速さ: a speed of 10 m/s
帯状平均子午面断面: zonally averaged cross section
極から来た冷気: the cold air of polar origin
東への冷気(暖気)の移流: cold (warm) advection to the east
物理的に意味のある解: physically relevant solution
静止状態: a state of rest
等温静止状態: a state of rest and constatnt temperature/ a state of rest at/with constant temperature
統計的 平衡/定常 状態: statistically steady state

5.1.3  形容詞

時間平均されたA: time-averaged A, time-mean A

5.2  例文集

5.3  Tips

参考文献一覧

6  つなぎ言葉

6.1  発生順: まず最初に

first
順番が最初
firstly
used to introduce a first point of reason
e.g., Firstly it is wrong and secondly it is extremely difficult to implement.
at first
in the initial stage or stages、時間的に最初
in the beginning
initially
at first
e.g., Initially, he thought the new concept was nonsense.

6.2  発生順: 次に

then
at that time, after that: 時間的にあとである必要がある。
later on
at a time in the near future
soon
in or after a
thereupon
immediately or shortly after that
e.g., He thereupon returned to Moscow.
meanwhile
in the intervening period of time
next
coming immediately after the time of writing or speaking. coming immediately after the present one in order or
in turn
one after the other: 交替で

6.3  発生順: 結局

finally
after a long time, typically involving difficulty or delay. used to introduce a final point or
in the end
eventually or on reflection
eventually
in the end, esp. after a long delay, dispute, or series of problems
e.g., Eventually, after midnight, I arrived at the hotel.

6.4  同時生起

at the same time
1 simultaneously.
2 on the other hand
while
1 during the time that; at the same time as
2 whereas (indicating a contrast)
simultaneously
occurring, operating, or done at the same time

6.5  付加

and
also
in addition; too
again
another time; once more
furthermore
in addition; besides (used to introduce a fresh consideration in an argument)
moreover
as a further matter; besides
in addition
as an extra person, thing, or circumstance
besides
in addition to; apart from 口語的
as mentioned earlier
in (point of) fact
used to emphasize the truth of an assertion, esp. one contrary to what might be expected or what has been asserted :

6.6  説明

that is (to say)
a formula introducing or following an explanation or further clarification of a preceding word or words.
述べたことの説明を始めるために使われる
in other words
expressed in a different way; that is to say.
thus
1 as a result or consequence of this; therefore.
2 in the manner now being indicated or exemplified; in this way
namely
that is to say; to be specific (used to introduce detailed information or a specific example)
すでに(曖昧または間接的に)述べたものを名指ししたり、具体的にしたり、同じものであることを述べる(コメントする)。namelyの後に続く語は読み手が既に知っていて、推察可能な語が来る。
especially
used to single out one person, thing, or situation over all others 文節を修飾しない
particularly
1 to a higher degree than is usual or average.
2 so as to give special emphasis to a point; specifically
in particular
特に, 特別に(ふつう焦点の当てられた語句の直後に置かれる);詳細に(⇔ in general)
generally
1 in most cases; usually.
2 in general terms; without regard to particulars or exceptions
certainly
undoubtedly; definitely; surely
altogether
completely; totally • including everything or everyone; in total : he had married several times and had forty-six children altogether. • [ sentence adverb ] taking everything into consideration; on the whole :
evidently
1 plainly or obviously; in a way that is clearly seen or understood.
2 [ sentence adverb ] it is plain that; it would seem that
specifically
1 clearly defined or identified • precise and clear in making statements or issuing instructions : when ordering goods be specific. • belonging or relating uniquely to a particular subject

6.7  部分変更

incidentally
1 [ sentence adverb ] used when a person has something more to say, or is about to add a remark unconnected to the current subject; by the way
by the way
1 incidentally (used to introduce a minor topic not connected with what was being spoken about previously)
alternatively
[ sentence adverb ] (of one or more things) available as another possibility

6.8  関連・関心・例外

in this respect
in this regard
in connection with the point previously mentioned
in regard to
with reference to this
in relation to; as regards
aside from
apart from.
例外に言及はするがそれほど重要なものではないという意味合い.
apart from
1 except for
2 in addition to; as well as :
例外に言及はするがそれほど重要なものではないという意味合い.
except for
例外の存在の重要さを強調する意味合いで使うことがある.
except for = with the exception of
(用法1) [ある性質Aで特徴付けられる物事の類] +, except for + [その類に属しているにも関わらず、性質Aを持っていない物事] +, [性質A]
(用法2) [全般的な状況の説明] + , except for + [全般的な状況の一貫性を破る物事]
上記の用法以外では他の前置詞を用いる。
excepting, but (for), bar
それら例外を別にすれば一般論が成り立つという積極的な主張. exceptingは改まった語で, butはもっぱらnone, nothing, all, anyoneなどのあとで用いられる.
in every part
on the basis of
副詞句で、一般に動詞を修飾するために用いられる。はっきりとした論理的つながりが必要。
based on
形容詞句なので、必ず名詞を修飾しなければならない。はっきりとした論理的つながりが必要。
in reference to, with respect to
参考にして
using
利用して

6.9  比較

likewise
1 in the same way; also • used to introduce a point similar or related to one just made
2 in a like manner; similarly
similarly
[ sentence adverb ] used to indicate a similarity between two facts or events.
in the same way
on the one hand / on the other hand
used to present factors that are opposed or that support opposing opinions. 対で用いるのが普通。
文A. On the other hand, 文B. このとき AとBは同じ主題にたいして、異なる見方を示さなければならない。
in/by contrast
必ず同種のものを対比する
as compared with

6.10  例示

for example
used to introduce something chosen as a typical case
for instance
for instance as an example
to give an example for
to illustrate
in particular
especially (used to show that a statement applies to one person or thing more than any other)
especially
1 used to single out one person, thing, or situation over all others
2 to a great extent; very much
文節を修飾しない
in this way
in what follows
namely
that is to say; to be specific (used to introduce detailed information or a specific example)
すでに(曖昧または間接的に)述べたものを名指ししたり、具体的にしたり、同じものであることを述べる(コメントする)。namelyの後に続く語は読み手が既に知っていて、推察可能な語が来る。
that is
a formula introducing or following an explanation or further clarification of a preceding word or words
述べたことの説明を始めるために使われる

6.11  理由・原因

because
for the reason that; since 文中でつかうときはコンマ不要。
原因や理由を新たな情報として明確に述べるための接続詞。 原因・理由を述べることが主な目的の場合はbecause節をあとに、その結果を述べるのは主な目的ならばbecause節は前に持ってくる。
since
1 in the intervening period between (the time mentioned) and the time under consideration, typically the present
2 [ conj. ] for the reason that: because
3 [ adv. ] ago
読み手もすでにわかっているだろうと思われることを理由として持ち出すときに使う。Since節を前に置くことがおおい。
for this reason
on account of
because of
because of
on account of; by reason of
of につづく名詞は“理由を生み出すもの”であって理由(reason)そのものではない。
owing to
because of or on account of :
this is attributed to A
this is due to A
1 caused by or ascribable to
2 because of; owing to
A results from B
B results in A
this arises from
this originates from
this is caused by
this is an explanation of why…
take account of A
consider a specified thing along with other factors before reaching a decision or taking action.
take A into account of
同上
A yields that

6.12  結果・帰結

so
therefore
for that reason; consequently. 前の文(節)の内容が、後の内容を行う/となる理由をあらわす。A文. B文. C文. (A, B, Cの内容)ゆえにD. のような使い方はできない。
consequently
as a result. 状況に対して使用される。
hence
1 as a consequence; for this reason
2 in the future (used after a period of time)
3 (also from hence) from here
論理的な「自然な脈絡」 = as an inference, as a deduction, it is implied that, it follows that
thus
1 as a result or consequence of this; therefore
2 in the manner now being indicated or exemplified; in this way
3 [as submodifier ] to this point; so
as a result
(前文の) 結果として。状況に対して使用される。
as the result
(前文の) 結果として。具体的なもの(数式なども含む)に対して使用される。
this shows
this indicates
it follows
on this basis
arising out of this
thereby
by that means; as a result of that :
according to A
as stated by or in • in a manner corresponding or conforming to • in proportion or relation to.
Aは必ず名詞で、以下の3つが正しい用法で、これら以外の意味の「によって、によれば、に従って」の訳語としては使えない。どうせなら、下記の同義表現を用いるべき。
in keeping with, in agreement with 〜と合致して
as stated by, on the authority of 〜で表明された通りに
in the manner determined by 〜で定義された通りに
accordingly
1 in a way that is appropriate to the particular circumstances
2 [ sentence adverb ] consequently; therefore
in consequence
as a result.
due to A
1 caused by or ascribable to
2 because of; owing to. 形容詞句である。名詞を修飾する。
owing to A
owing to because of or on account of これは副詞句。
for this reason
for the reasons stated/mentioned above
上記の(複数の)理由により

6.13  反対・対称

but
1 used to introduce something contrasting with what has already been mentioned
however
1 used to introduce a statement that contrasts with or seems to contradict something that has been said previously
副詞であり、接続詞ではない。よって文節をつなぐことはできない。セミコロンで文と文をつなぐことが多い。
conversely
introducing a statement or idea that reverses one that has just been made or referred to
instead
as an alternative or substitute
nevertheless
in spite of that; notwithstanding; all the same
in spite of that
without being affected by the particular factor mentioned
despite
without being affected by; in spite of
前置詞であり、接続詞ではない。
oppositely
1 [ attrib. ] having a position on the other or further side of something; facing something, esp. something of the same type
on the one hand / on the other hand
used to present factors that are opposed or that support opposing opinions. 対で用いるのが普通。
文A. On the other hand, 文B. このとき AとBは同じ主題にたいして、異なる見方を示さなければならない。
on the contrary
in/by contrast
必ず同種のものを対比する
contrary to this
whereas
in contrast or comparison with the fact that
unlike
dissimilar or different from each other

6.14  譲歩

though
despite the fact that; although
although
in spite of the fact that; even though
even though
despite the fact that
but
however
1 used to introduce a statement that contrasts with or seems to contradict something that has been said previously
副詞であり、接続詞ではない。よって文節をつなぐことはできない。セミコロンで文と文をつなぐことが多い。
conversely
introducing a statement or idea that reverses one that has just been made or referred to
instead
as an alternative or substitute
nevertheless
in spite of that; notwithstanding; all the same
notwithstanding
anyhow
1 another term for anyway.
at any rate
whatever happens or may have happened • used to indicate that one is correcting or clarifying a previous statement or emphasizing a following one
that being so

6.15  結論

in conclusion
lastly; to sum up
as a conclusion
to conclude
conclusively
serving to prove a case; decisive or convincing :
finally
after a long time, typically involving difficulty or delay • as the last in a series of related events or objects • [ sentence adverb ] used to introduce a final point or reason • in such a way as to put an end to doubt and dispute
to sum up
give a brief summary of something
in sum
to sum up; in summary
in summary
in short
in a word
briefly
in short
to sum up; briefly :
to make a long story short

6.16  目的

so that…
in order that…
with the intention; so that
so as to
in order to do something
in such a way that…
in such a way as to

6.17  指摘

It should be pointed out that
Note that
Bear in mind that
It is notable that
It is noteworthy that
It should be emphasize that
We should be keep in mind that

6.18  類似

similarly
[ sentence adverb ] used to indicate a similarity between two facts or events :
likewise
1 in the same way; also• used to introduce a point similar or related to one just made
2 in a like manner; similarly

6.19  場合

in the case that, in the situation that, for the case that
場合の意味で用いる。 

6.20  文頭表現

6.21  例文集

6.22  Tips

参考文献一覧

7  未分類

7.1  対応語句

7.1.1  動詞

生じる、起こる: originate

7.1.2  名詞

流体力学で現れる多くの偏微分方程式: Many of the partial differential equations arising in fluid dynamics

7.1.3  形容詞

前の: preceding

7.1.4  副詞

徐々に: progressively

7.2  例文集

7.3  Tips

参考文献一覧

8  マーク・ピーターセンの教え

ここでは、マーク・ピーターセンの著書

の教えを暫定的にメモしておく。

8.1  冠詞に名詞がくっついている

英語の発想では、「ある名詞に適した冠詞は何か?」と考えるのではなく、 「名詞が何であるかを考える前に『冠詞』は何か?」を考える。

すなわち、冠詞の使用不使用/単複は文脈がすべて

8.2  関係詞のテクニック

前置詞 + 関係代名詞 あるいは 関係副詞を使うと英文らしさが上がる。

8.2.1  関係詞と先行詞が離れてしまうときの対処法

関係詞がかかる先行詞は文法上は原則、関係詞の直前にくる。それでも関係詞と先行詞が離れてしまうときは以下の方法で対応する。

先行詞を再掲する
× The problems for foreigners of conducting research at the major Japanese universities, which are well known to most visiting scholars, are numerous and deep-rooted.
○ The problems for foreigners of conducting research at the major Japanese universities, problems which are well known to most visiting scholars, are numerous and deep-rooted.
and でつなぎ、複文にする
× The lyrics of that song were written on a word processor, whose appeal mainly depends on clever rhyming and puns.
○ The lyrics of that song were written on a word processor, and their appeal mainly depends on clever rhyming and puns.
態を変える
○ A word processor was used to write that song’s lyrics, whose appeal mainly depends on clever rhyming and puns.

8.2.2  前節全体が先行詞とする which

× Almost no funding is available now for basic research, which is surely the result of shortsighted government policies.
○ Almost no funding is available now for basic research, which situation is surely the result of shortsighted government policies.

8.3  主語と動詞が離れすぎている受動態の対処法

主語が長く、動詞と離れすぎた文はとても読みにくい。
× A virus which is believed to be responsible for a disease similar to AIDS in cats was discovered.

能動態にする
We discovered a virus believed to be responsible for a disease similar to AIDS in cats.
動詞の名詞化 + 修飾句と動詞の倒置
Discovery is reported of a virus believed to be responsible for a disease similar to AIDS in cats.
主語と動詞の倒置
Discovered is a virus believed to be responsible for a disease similar to AIDS in cats.
間に別の名詞が入らないように気をつけて、動詞を関係代名詞の前にもってくる
A virus is discovered which is believed to be responsible for a disease similar to AIDS in cats.

8.4  副詞の誤用

8.5  時制

現在形
「現在の状態」を表す。動作動詞の場合、「その動作を行う習慣=状態」を表す。
現在完了形
この瞬間に行われている動作を表す。
口語では、「前から決まっている予定」を表すこともある。
現在完了形
「過去のある時点から、現在まで続いている(繋がっている)こと」を表す。
現在完了進行形
現在完了よりも臨場感が強い表現。
過去形
現在とは切り離された、過去の世界の話。
過去完了形
過去のある時点から、過去の別の時点までの話。
過去(完了)進行形
いずれも臨場感が増す。
未来形(will)
未来の話。
be going to 〜
前もって決まっていた未来の予定を表す。

8.6  仮定法

8.6.1  願い: wish と hope

wish は事実と反すること・実現不可能なことを願い、実際はそうでないことを表す。
hope は実際にあり得ることに対する願いを表す。実際どうなるかは分からない

8.7  使役動詞

make 〜 do …
無理やりにさせる場合。 = force 〜 to do …; compel 〜 to do …
let 〜 do …
相手の望み通りにさせてあげる場合。 = allow 〜 to do …; permit 〜 to do …
have 〜 do …
頼みさえすれば当然それをしてもらえるという前提・意識でさせる場合。 = tell 〜 to do …; order 〜 to do …
get 〜 to do
してほしいことを、なんとかして、させるようにしむける場合。 = persuade 〜 to do …; convince 〜 to do …

9  科学英語論文における時制

ここでは、科学英語論文を書くさいに、我々を悩ませる「時制」についてまとめる。

なぜ、「時制」が悩ましいかと言うと、これと言ったルールがなく、参考書によって 意見が異なっているからだ。よって、ここではまず、以下の文献にで記述されている 時制の使い分けを記す。

参考文献

9.1  様々な時制解説

9.1.1  “英語で書く科学・技術論文”の時制解説

9.1.2  “How to Write and Publish a Scientific Paper 6th edition” (訳書 “世界に通じる科学英語論文の書き方—執筆・投稿・査読・発表”)の時制解説

9.1.3  “ポイントで学ぶ科学英語の効果的な書き方”の時制解説

基本は現在形。終わったことは過去形。終わってるけど、今もそれについて考えてることは現在完了形。

現在形: 科学的真理
過去形: 研究のために手を動かしたこと(実験・数値計算など)
現在完了形: 過去に行われたけど、本研究に強く関連すること。

9.1.4  “NASA SP-7084 1998 ハンドブックに学ぶテクニカルライティング”の時制解説

以下の論説の4要素によって時制を決める。

  1. 解説(物事がどのようにして、なぜ起こるのかを説明する。)→ 現在形
  2. 叙述(何が起こったかを述べる)→ 過去形
  3. 描写(図表によりイメージを与える)→ 現在形
  4. 論拠(理由を挙げることによって納得させる)→ 現在形

具体的な指針は以下の通り。

9.1.5  “ELOQUENT SCIENCE” の時制解説

9.1.6  “ENGLISH for Writing Research Papers”の時制解説

状況別に使用される時制は以下の通り。

Abstracts
Introduction
Introductionのなかの先行研究のレビュー
Methods
Results
*実際には執筆途中で気づいて追加で行った実験の結果などもあるだろうが、もちろんそういうものは「書き出す前に発見したこと」に該当する。
Conclusion

9.2  ケーススタディ

次のように時制を色分けする。

9.2.1  Kaye and Linden (2004)

Kaye, N.,Linden, P. (2004). Coalescing axisymmetric turbulent plumes. Journal of Fluid Mechanics, 502, 41–63. doi:10.1017/S0022112003007250

Abstract

The coalescence of two co-flowing axisymmetric turbulent plumes and the resulting single plume flow is modelled and compared to experiments. The point of coalescence is defined as the location at which only a single peak appears in the horizontal buoyancy profile, and a prediction is made for its height. The model takes into account the drawing together of the two plumes due to their respective entrainment fields. Experiments showed that the model tends to overestimate the coalescence height, though this discrepancy may be partly explained by the sensitivity of the prediction to the entrainment coefficient. A model is then developed to describe the resulting single plume and predict its virtual origin. This prediction and subsequent predictions of flow rate above the merge height compare very well with experimental results.

Introduction

The coalescence of turbulent plumes to form a single plume is a process that occurs in many situations. Ventilated enclosures with multiple heat sources, such as work spaces with electronic equipment or occupied lecture theatres, contain turbulent plumes that rise above heat sources and interact. Their interaction will affect the resulting ventilation flow (Linden 1999). Turbulent plumes rising from smokestacks in close proximity can also interact. In this case the rise height of the plumes into a stratified atmosphere will depend on the nature of the interaction. Despite these numerous applications, very little work has been done on the question of how two turbulent plumes coalesce to form a single plume. This paper describes a model for the merging of two turbulent plumes, and for the resulting single plume.

PeraGebhart (1975) studied the interaction of laminar parallel line plumes, merging to form a single plume. They conducted experiments in which the relative strengths of the two plumes and the ratio of the plume source lengths to their separation were varied. They presented a model for this merging process based on the restriction of the entrainment into each plume by the presence of the other. They observed that for plumes of significantly different strengths, the weaker plume was deflected considerably more than the stronger plume. Some experiments were also done with axisymmetric plumes. Although no model was presented for how the axisymmetric plumes coalesce, they observed that the interaction was weaker than for line plumes.

Moses, ZocchiLibchaber (1993) presented work focused on the starting cap of laminar plumes, but also briefly examined the coalescence height zm of axisymmetric laminar plumes. They found that zm is given by ... where d0 is the source separation, ν the kinematic viscosity, σ the Prandtl number, and F is the buoyancy flux defined in Batchelor (1954) and given by ... where Φ is the heat flux of the plume, Cp is the specific heat, ρ0 is a reference density, g is the gravitational acceleration and T0 in degrees Kelvin is a reference temperature.

The main difference between merging laminar and turbulent plumes is that turbulent plumes are independent of the fluid viscosity. However, there are two key points of similarity: laminar axisymmetric plume interaction results in the plumes coalescing further from their sources than for the case of line plumes, and the weaker plume tends to be deflected significantly more than the stronger plume. As we discuss below, both of these effects are observed in turbulent plume interaction. (略)

Theoritical part

(略) Consider first the simplest case of two equal plumes (ψ = 1) with origins at the same height. A simple model, in which the plumes do not interact as they coalesce, provides a limit on λm. The average buoyancy profile of a single turbulent plume can be taken as Gaussian, with a radius given by 6αz/5, where α is the entrainment constant (Morton, TaylorTurner 1956). Allowing the two Gaussians to grow into each other as the height increases, and to have no other effect on each other, leads to a buoyancy profile function of the form ... where r is the radial distance from the plume axis and g′ is the reduced gravity. The model of BjornNielsen (1995) is similar, except that they were concerned with the velocity profiles. Their model is identical to the present case for equal plumes, though when ψ < 1 the ratio of the profile heights will differ. Here the buoyancy rather than the velocity profile is used to judge whether plumes have merged, because the buoyancy is the driving force, and once the driving force can be considered a single entity, it is reasonable to assume that the flow will behave as a single entity. For the case of equal turbulent plumes the choice between buoyancy and velocity profiles will make no difference as they will both merge at the same height. However for unequal plumes the ratio of the peak velocities will be ψ1/3, whereas the ratio of the peak buoyancies will be ψ2/3.

This function (2.4) is plotted in figure 2 for 1 < λ < 8 and χ0 = 1. Clearly the two Gaussians coalesce when λ is large enough, but it is difficult to say where the plumes can be said to have merged. We define the merging height to be the height at which the centreline value first becomes a local maximum – in other words, the height at which there are no longer two distinct peaks. This condition can be written as ... and, for non-interacting plumes, is easily solved to give ... In terms of the non-dimensional height one obtains ... as an upper bound on λm. For an entrainment constant α = 0.09, (2.8) gives λub = 6.5. We will discuss the choice of the numerical value of α in § 4. (略)

Experimental part

Sections 2 and 3 describe theoretical predictions for the merging height of co-flowing turbulent plumes, and the behaviour of the resulting plume in the far field. Experiments have been performed to test the validity of these models. The experiments were carried out using salt plumes in water. The density of the salt solution and the flow rate determined the buoyancy flux. These were chosen such that the plumes were close to ideal, i.e. with small initial volume and momentum fluxes. Corrections for the non-ideal nature of the sources were made by calculating the virtual origin zv using the method described in HuntKaye (2001). These corrections were typically of the order of 1 cm, which is considerably less that the typical coalescence heights measured of 10–30cm. For the case of unequal plumes, the average of the two virtual origin corrections was used. The difference between the origin corrections for each separate plume was typically less than 0.5cm, or 10% of the plume separation, making the use of the average correction a reasonable approximation.

Typical flow rates used in the experiments were between 0.5 and 2.5 cm3 s−1. The source buoyancy was varied between 30 and 150 cm s−2. The equal plume experiments were run using the dye attenuation technique in a glass tank approximately 60cm square with a depth of 180cm. The unequal plume experiments were run using a light-induced fluorescence (LIF) technique in a 64cm square Perspex tank that was filled to a depth of 15–35 cm. In order to maintain a turbulent plume from the source, a special nozzle was constructed. Figure 10 shows a schematic of the nozzle used. The nozzle allowed the creation of a turbulent outlet that would normally be laminar at the flow rates used. Figure 7 of HuntLinden (2001) shows the outflow from this nozzle compared to a standard cylindrical tube. The use of the Cooper nozzle meant that the plumes rapidly developed into their self-similar form. This can be more clearly seen in figure 13 below, which shows time-averaged buoyancy profiles from an experiment where two equal plumes coalesce. Clearly the profiles are Gaussian in nature well before they coalesce. (略)

Results

Experiments were conducted with different initial axial separations from 2.5 cm to 7.5 cm to establish the merging height. Figure 13 shows an example of the profiles for two equal plumes. The figure illustrates the fully developed plumes coalescing, with the two plumes merging at λ ≈ 4.5. Figure 14 gives the results of the measurements of the coalescence height. A straight line was fitted through the points. The line is a least-squares fit that was not forced through the origin. The slope of the straight line is the value of λm, see (2.2). The value of λm based on these experiments is λme = 4.1 ± 0.25. For α = 0.09 and the theoretical prediction αλm = 0.44 we obtain λmt = 4.8 which is larger than the measured value, implying that the plumes coalesce closer to the source than predicted. A discussion of possible reasons for this discrepancy is presented later.

The unequal plume experiments were all conducted at a fixed separation of 5cm. The results for this case are plotted in figure 15 as values of λm plotted against ψ. The theoretical predictions for λm and the upper bound λub for α = 0.09, as well as λm for α = 0.1, are also shown in figure 14. It is clear that the theory consistently over-predicts the measured coalescence height. However, the function is very similar to the predictions, with very little variation in λm over the range 0.3 < ψ < 1.

Coclusions

This paper has examined the coalescence of two axisymmetric plumes rising from two sources separated horizontally. The point of coalescence of two co-flowing plumes is defined as the point at which the mean horizontal buoyancy profile of the combined flow has a single maximum. Assuming that the plumes are only passively advected by the entrainment field of each other, a theoretical prediction of the merging height was made (figure 6). Buoyancy profiles measured using a dye attenuation technique (figure 11) and a light-induced fluorescence (figure 12) showed that the mean buoyancy profiles behaved in a similar manner to that predicted. The prediction of the merging height (λm = 4.8 for equal plumes) was tested experimentally and found to overpredict λm slightly (λm = 4.1 for equal plumes, see figure 15 for unequal plume results). Various reasons for this discrepancy were suggested, particularly the sensitivity of the merging height to the entrainment coefficient. However, the model predicts the qualitative behaviour of the merging height as a function of the buoyancy flux ratio ψ for unequal plumes, that is the merging height decreases only slightly with ψ for ψ > 0.25. The model also accounts for over 80% of the reduction in merging height that results from the approach of the plumes as a result of their mutual entrainment.

Once a point of coalescence was established a calculation was made for the flow in the far field after the plumes had merged. This calculation resulted in a prediction of the virtual origin of the resulting single plume (figure 9) in terms of the buoyancy flux ratio ψ and the horizontal source separation. For equal plumes the virtual origin of the merged plume is found to be a distance below the sources of 1.4 times the source separation. Again this was tested against experimental data (figures 16 to 19), showing very good agreement with theory. This agreement in the prediction of the plume flow rate justifies the selected definition of the merging height, as the transition from two-plume to single-plume behaviour is observed to occur at this height. Measurements of the volume flux show that the two-plume to single-plume transition occurs over a vertical distance of the order of the source separation.

Although the model presented shows good qualitative and quantitative agreement with observations and experiment, it has significant limitations that require further work. The plumes have the same source height, although many examples of vertical as well as radial separation of plume sources exist. For example, two electronic components at different heights on an electronic circuit board will produce plumes with different source heights. A method for adapting this model to account for vertical separation is required.

9.2.2  Scott and Polvani (2008)

Scott, R. K.,Polvani, L. M. (2008). Equatorial superrotation in shallow atmospheres. Geophysical Research Letters, 35(24), L24202. doi:10.1029/2008GL036060

Abstract

Simple, shallow-water models have been successful in reproducing two key observables in the atmospheres of the giant planets: the formation of robust, and fully turbulent, latitudinal jets and the decrease of the zonal wind amplitude with latitude. However, they have to date consistently failed in reproducing the strong prograde (superrotating) equatorial winds that are often observed on such planets. In this paper we show that shallow water models not only can give rise to superrotating winds, but can do so very robustly, provided that the physical process of large-scale energy dissipation by radiative relaxation is taken into account. When energy is removed by linear friction, equatorial superrotation does not develop; when energy is removed by radiative relaxation, superrotation develops at apparently any deformation radius.

Itroduction

The pronounced latitudinally aligned bands observed on the giant gas planets are the cloud-top signatures of strong alternating zonal jet streams in the so-called ‘‘weather layer’’, the shallow layer of stably-stratified atmosphere overlying the deeper convective region. Despite much attention over several decades, the actual dynamical processes involved in the maintenance of these jets remain controversial, to the extent that there is still debate over whether their origins lie in deep convection throughout the planetary interior [Busse, 1976], or rather in shallow turbulent motions within the thin atmospheric layer itself [Williams, 1978]. Somewhere between these two paradigms lies recent three-dimensional general circulation model studies [Schneider and Lui, 2008; Yamazaki et al., 2005]. Quantitative predictions based on the former paradigm have been difficult to make, in part because very little is known about the planets’ interior [Guillot, 1999], and in part because of the high cost of three-dimensional numerical integrations of convective turbulent flow. The latter paradigm is both conceptually and computationally simpler and is based upon well-known and fundamental properties of rotating, stratified flows.

(略)

As we demonstrate below, the form of the large-scale energy dissipation is a determining factor in the direction of equatorial jets. In forced-dissipative calculations with simple models, linear momentum damping is commonly employed because it provides a convenient closure for the total energy in two-dimensional flow. The atmospheres of the gas giants, however, dissipate energy primarily through radiation to space [e.g., Ingersoll et al., 2004; Showman, 2007]; the absence of a solid ground underlying the atmospheres of the giant planets obviates the usual motivation of linear momentum damping as a model for Ekman drag. Here, we focus on the effect of radiative or thermal damping and demonstrate that it leads to the spontaneous emergence of equatorial superrotation, even though the small-scale forcing is completely isotropic.

Methods

Our model consists of the shallow water equations for a fluid of mean depth H, on the surface of a sphere of radius a, rotating at constant angular velocity W, and with gravity g. In terms of vorticity, z, divergence, d and height h = H + h0, the governing equations are: ... where za = f + z is the absolute vorticity, f = 2Wsinf is the Coriolis parameter, u = (u, v) is the velocity, and E = juj2/2. The shallow water equations can be viewed as describing the motion of a shallow layer of rotating fluid, or, alternatively, as describing an internal vertical mode of equivalent depth H in a continuously stratified fluid. The relevant nondimensional parameters are the Rossby number Ro = U/2aW and Froude number Fr = U/ gH, where U is a typical velocity scale. In place of the latter we use LD/a = Ro/Fr, where LD = gH/2W is the deformation radius, since it can be determined entirely in terms of physical parameters.

(略)

Equations (1a)–(1c) are integrated numerically using a standard pseudo-spectral method [Scott and Polvani, 2007] with a resolution of T682 (equivalent to a 2048 x 1024 longitude-latitude grid). Small-scale hyperdiffusion, nr8x, is included to control the enstrophy at small scales. The equations are integrated for 104 planetary rotations.

Our choice of physical parameters is dictated by values typical of the giant planets. In particular, we are interested in the small Ro regime and we verify a posteriori that the zonal jet speeds that arise in our model are comparable to those of the planets (O(100) ms1). For a given forcing strength 0 the final Ro is determined by trad. This leaves LD as the main free parameter. While we are interested in how the nature of the equatorial flow changes with LD, we are again primarily concerned with cases relevant to the giant planets, for which LD/a is usually put in the range 0.025 – 0.03 [e.g., Cho et al., 2001; Ingersoll et al., 2004].

Results

Figure 1 shows the instantaneous zonal mean zonal velocity u at t = 10000 days for a series of three numerical integrations with decreasing LD/a = 1.0, 0.1, 0.025, and with radiative damping timescale trad = 0.25(LD/a)2 (in all cases 1/tfr = 0). The prominent feature, and the main result of the paper, is the strong superrotating (positive) equatorial jet, clearly visible in all cases. In contrast, when purely frictional damping is used (the case 1/trad = 0 and tfr = 10000 is shown bold dashed) the equatorial jet is subrotating. In all cases, an alternating pattern of weaker jets is also apparent, and extends through the midlatitudes. We emphasize that these zonal jets and their structure arise spontaneously and despite the fact that the forcing is purely isotropic in space and time: there is no forcing in the zonal mean and there is no asymmetry in the forcing that might fix the sign of the jet at the equator.

While our model is highly idealized, we have nevertheless selected parameters that correspond, approximately, to the Jovian atmosphere. Rossby numbers are similar to Jovian values, with resulting equatorial jet speeds of approximately 200 ms1, and LD/a ranges down to 0.025. As far as we are aware, this is the first numerical integration with physically relevant parameters in rotating shallow water to produce the observed sign of the equatorial jet. (In a two-dimensional barotropic model, that is, the shallow water model in the limit LD/a ! 1, Dunkerton and Scott [2008] showed that superrotating and subrotating equatorial jets emerged with roughly equal probability in an ensemble of numerical calculations with identical physical parameters. Similar behavior also emerges in the shallow water equations with linear friction for LD/a 1, but has until now not been found for LD/a 1, the regime of relevance for the giant planets.) (略)

Discussion

In conclusion, we have shown that a simple shallow water model, with random isotropic forcing and a large-scale energy dissipation that crudely represents energy loss through radiation, is able to capture several of the main features of the atmospheres of the giant gas planets, specifically: (i) a turbulent flow dominated by strong, steady zonal jets; (ii) a decrease in jet amplitude with latitude; (iii) small scale filaments and vortices similar to observed cloud top features; and, most importantly, (iv) an equatorial jet that is superrotating. Further, we note that equatorial super-rotation is a stable feature of this model, whose persistence does not require continued thermal damping: when the thermal damping is turned off, the equatorial jets continue to intensify (in cases where the forcing remains present) or remain steady (in cases where the forcing is also turned off).

Given that they are so robust, why then have super-rotating equatorial jets not been previously obtained in shallow water models? One possible reason is that in rotating shallow water anticyclones are in general more stable than cyclones [Polvani et al., 1994; Stegner and Dritschel, 2000], an asymmetry which grows with decreasing LD/a. Although difficult to diagnose in a fully turbulent flow, this asymmetry, coupled with the b-drift of anticyclones toward low latitudes, may account for an accumulation of anticyclonic shear, and hence a subrotating jet at the equator. Linear friction acts equally on both cyclonic and anticyclonic vorticity and so does not alter this asymmetry. In contrast it can be shown that, under certain conditions, radiative relaxation can damp anticyclones at a faster rate than cyclones (full details will be presented in a longer article), and may therefore offset the asymmetry. However, other mechanisms may also be relevant in the selection of equatorial superrotation, including the latitudinal dependence of the angular momentum changes arising from thermal damping, and the relative effects of thermal and frictional damping on mean flow changes induced by momentum flux convergences due to equatorial waves [Andrews and McIntyre, 1976]. Work is currently underway towards a deeper understanding of the precise mechanisms whereby the superrotation is generated.

9.2.3  Bordoni and Schneider (2010)

Bordoni, S.,Schneider, T. (2010). Regime Transitions of Steady and Time-Dependent Hadley Circulations: Comparison of Axisymmetric and Eddy-Permitting Simulations. Journal Of The Atmospheric Sciences, 67(5), 1643–1654. doi:10.1175/2009JAS3294.1

Abstract

Steady-state and time-dependent Hadley circulations are investigated with an idealized dry GCM, in which thermal forcing is represented as relaxation of temperatures toward a radiative-equilibrium state. The latitude f0 of maximum radiative-equilibrium temperature is progressively displaced off the equator or varied in time to study how the Hadley circulation responds to seasonally varying forcing; axisymmetric simulations are compared with eddy-permitting simulations. In axisymmetric steady-state simulations, the Hadley circulations for all f0 approach the nearly inviscid, angular-momentum-conserving limit, despite the presence of finite vertical diffusion of momentum and dry static energy. In contrast, in corresponding eddy-permitting simulations, the Hadley circulations undergo a regime transition as f0 is increased, from an equinox regime (small f0) in which eddy momentum fluxes strongly influence both Hadley cells to a solstice regime (large f0) in which the cross-equatorial winter Hadley cell more closely approaches the angular-momentum-conserving limit. In axisymmetric time-dependent simulations, the Hadley cells undergo transitions between a linear equinox regime and a nonlinear, nearly angular-momentum-conserving solstice regime. Unlike in the eddy- permitting simulations, time tendencies of the zonal wind play a role in the dynamics of the transitions in the axisymmetric simulation. Nonetheless, the axisymmetric transitions are similar to those in the eddy-permitting simulations in that the role of the nonlinear mean momentum flux divergence in the zonal momentum budget shifts from marginal in the equinox regime to dominant in the solstice regime. As in the eddy-permitting simulations, a mean-flow feedback—involving the upper-level zonal winds, the lower-level temperature gradient, and the poleward boundary of the cross-equatorial Hadley cell—makes it possible for the circulation fields to change at the transition more rapidly than can be explained by the steady-state response to the thermal forcing. However, the regime transitions in the axisymmetric simulations are less sharp than those in the eddy-permitting simulations because eddy–mean flow feedbacks in the eddy-permitting simulations additionally sharpen the transitions.

Introduction

Monsoons are generally viewed as regionally concentrated, thermally direct overturning circulations in the latitude–height plane, with ascending motion in the summer hemisphere subtropics and descending motion in the winter hemisphere (Newell et al. 1972; Gadgil 2003; Bordoni and Schneider 2008). These monsoonal circulations dominate the solstitial zonally averaged Hadley circulation, which is characterized by a strong and broad cross-equatorial winter cell and a very weak and narrow summer cell. Most theories of the dynamics of these circulations have been developed in the context of axisymmetric models of the Hadley circulation in which the upper branches of the circulation are assumed to be nearly inviscid and angular-momentum-conserving (e.g., Schneider 1977; Held and Hou 1980; Lindzen and Hou 1988; Satoh 1994; Caballero et al. 2008). For instance, Plumb and Hou (1992) showed that axisymmetriccirculations driven by a localized off-equatorial thermal forcing undergo transitions from a linear, viscous regime to a nonlinear, angular-momentum-conserving regime beyond a threshold forcing value; they suggested that this threshold behavior may account for the rapid onset of monsoons.

The nonlinear axisymmetric theory of Plumb and Hou (1992) has been extended in several studies to account for the influences of moist convection (Emanuel 1995; Zheng 1998), of a subtropical continent (Prive ́ and Plumb 2007a,b), and of moisture–dynamics feedbacks such as wind-induced surface heat exchange (Boos and Emanuel 2008a,b). All of these studies, however, have postulated the existence of a localized subtropical heating (either provided by imposed surface temperature anomalies or a subtropical continent) as necessary for monsoon development and have neglected the interaction between large-scale eddies and tropical circulations.

But, large-scale eddies of midlatitude origin may in fact play an important role in the dynamics of Hadley and monsoonal circulations. Through idealized GCM experiments, Walker and Schneider (2006) found that over a wide range of climates, including earthlike climates, the strength of a Hadley cell driven by hemispherically symmetric thermal forcing is strongly influenced by eddy momentum fluxes of extratropical origin, so the scalings that nearly inviscid axisymmetric theory gives for the extent and strength do not apply.

(略)

Model description and experimets

The idealized GCM is the same hydrostatic primitive-equation model as in SB08, where more details can be found. The model is a spectral-transform model, run in axisymmetric configuration (truncated at zonal wave-number zero) with T42 horizontal resolution and 30 unequally spaced sigma levels in the vertical. Radiative forcing is provided by Newtonian relaxation toward a radiative-equilibrium state of a semigray atmosphere, which is axisymmetric and statically unstable in the lower troposphere. The radiative-equilibrium surface temperature varies with latitude as ... where f0 is the latitude at which Tse is maximal, and Dh 5 112.5 K is the pole-to-equator temperature difference for f0 5 0. In the steady-state simulations, f0 is a fixed parameter; in the time-dependent simulations, it varies with time according to This thermal forcing fundamentally differs from that used in Plumb and Hou (1992) in that it is not localized in the subtropics and in that the radiative-equilibrium temperature has nonzero curvature and (for f0 61⁄4 0) a nonzero gradient at the equator. This implies that a meridional circulation is to be expected for all values of f0 (Plumb and Hou 1992). It also differs from that used in Fang and Tung (1999) in that it features larger seasonal excursions of the Tse maximum away from the equator.

(略)

Steady-state simulations were conducted with fixed values of f ranging from 08 (vernal equinox) to 23.58N (boreal summer solstice). For comparison with the results from these steady-state axisymmetric simulations, in section 3 we also show results from the statistically steady states of the eddy-permitting simulations in SB08. The averages shown are surface-pressure-weighted sigma-coordinate averages over longitude and time (over 100 simulated days) in the axisymmetric and eddy-permitting simulations. The time-dependent simulation of seasonal cycles was started from the equinox steady state (f0 5 08) and was run for five years. The results shown in section 4 are from the equilibrated response, which is reached three years into the simulation. Our discussion mostly focuses on the comparison of the axisymmetric time-dependent simulations with the eddy-permitting simulations in SB08 (control). We also discuss how the longer convective time scale and the nonzero vertical diffusivities used in the axisymmetric simulations impact our results, by comparing the control eddy-permitting simulation with eddy-permitting simulations in which the longer convective time scale and the vertical diffusivities are separately or simultaneously introduced.

Numerical results

Figure 1 shows the strength of the cross-equatorial Hadley cell in the axisymmetric steady-state simulations for different values of the latitude f0 of maximum radiative-equilibrium surface temperature, together with the corresponding values from the eddy-permitting simulations in SB08. In the eddy-permitting simulations, the scaling of the cross-equatorial Hadley cell strength as a function of f0 is in two different regimes: a weaker dependence on f for f98 (roughly f1/5) and a stronger dependence for f for f * 98 (roughly f3/4). In contrast, in the axisymmetric simulations, the cross-equatorial Hadley cell strength increases almost linearly with f0 throughout the parameter space. For the largest f0 values, the Hadley cell strengths in the eddy-permitting and axisymmetric simulations converge. In Fig. 1, we also show the strength of the cross-equatorial Hadley cell from numerical calculations analogous to those of Lindzen and Hou (1988) but with the radiative–convective equilibrium state of our simulations. Similarly to what is seen in the axisymmetric simulations, the nearly inviscid axisymmetric theory for our simulations does not exhibit a transition in scaling regimes at f0 ; 98, but it predicts a somewhat stronger power-law dependence of the circulation strength on f (roughly f4/3). The axisymmetric cross-equatorial circulations do not exhibit a transition in scaling regimes in the parameter space because they tend to approach the angular-momentum-conserving limit for all values of f0, despite the finite vertical diffusion of momentum and dry static energy.

Conclusions

To explore if and to what extent the rapid regime transitions of the Hadley cells in the eddy-permitting simulations in SB08 and Bordoni and Schneider (2008) can still occur when large-scale eddies are suppressed, we have performed steady-state and time-dependent axisymmetric simulations. Although finite vertical diffusion of momentum and dry static energy needs to be used to achieve approximately steady states, the Hadley cells in the axisymmetric steady-state simulations generally approach the nearly inviscid limit. As the latitude of maximum radiative-equilibrium temperature is progressively displaced off the equator, they do not undergo regime transitions. The marked shifts in circulation fields that occur at the transitions from the eddy-dominated regime to the nearly angular-momentum-conserving regime in the eddy-permitting steady-state simulations do not occur in the axisymmetric steady-state simulations. As a consequence, in the axisymmetric steady-state simulations, the strength of the cross-equatorial Hadley cell, the location and intensity of the main convergence zone, and the upper- and lower-level winds in the summer subtropics do not change as rapidly as in the corresponding eddy-permitting simulations.

9.2.4  Bird et al. (2005)

Bird, M. K., Allison, M., Asmar, S. W., Atkinson, D. H., Avruch, I. M., Dutta-Roy, R., Dzierma, Y., et al. (2005). The vertical profile of winds on Titan. Nature, 438(7069), 800–802. doi:10.1038/nature04060

Abstract

One of Titan’s most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan’s atmospheric pressure and temperature1,2 and evidence for the presence of strong zonal winds3. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment4 on the Huygens probe5. Here we report a high resolution vertical profile of Titan’s winds, with an estimated accuracy of better than 1 m s21. The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (,1 m s21) were seen in the lowest 5 km of descent.

Introduction

Titan’s winds have been the subject of many investigations since that first close-up look from Voyager nearly 25years ago. The infrared observations revealed a distinct pole-to-equator latitudinal contrast in temperature, varying from DT < 3 K at the surface to DT < 20 K in the stratosphere, implying a superrotational, global cyclostrophic circulation analogous to that observed on Venus3. Scaling for a hydrostatic, gradient-balanced flow suggested that the meridional and vertical winds should be much weaker than the zonal motion. Titan-specific general circulation models (GCMs) have since been introduced to study the conditions necessary for generation of atmospheric superrotation6–9.

Observational evidence for winds on Titan has also been inferred from the finite oblateness of surfaces of constant pressure determined from precise ground-based astrometry during stellar occultations in 1989 and 200110,11. These occultation experiments, as well as the thermal gradient observations, cannot be used to determine the sense of the zonal winds (that is, prograde or retrograde). A technique offering a direct determination of the wind velocity is to measure the differential Doppler shift of atmospheric spectral features as the field-of-view moves from east limb to west limb. Infrared heterodyne observations of Titan’s ethane emission at 12 mm have yielded evidence for prograde winds with velocities exceeding 200ms21 but with a relatively large uncertainty of 150 m s21 (ref. 12). These results assume a global-average zonal wind field and apply to only a limited range in height near the 1 hPa level (200 km altitude). More traditional cloud-tracking techniques using Voyager 1 and ground-based images of Titan have been largely stymied by the ubiquitously poor image contrast. The success of such efforts has improved with the extended capabilities of the imaging system on Cassini, from which a number of atmospheric features have been identified as middle- to lower- tropospheric clouds, particularly near Titan’s southern pole13.

Methods

The Huygens probe entered and descended for nearly 150 min through the atmosphere of Titan, survived impact on the surface, and continued its telemetry broadcast to the Cassini spacecraft on two separate radio links, denoted channels A and B, for an additional 193 min (ref. 5). The Doppler Wind Experiment (DWE) instrumen- tation—consisting of an atomic rubidium oscillator in the probe transmitter to assure adequate frequency stability of the radiated signal and a similar device in the orbiter receiver to maintain the high frequency stability—was implemented only in channel A (2,040 MHz)4. Whereas channel B (2,098 MHz) functioned flawlessly during the entire mission, the channel A receiver was not properly configured during the probe relay sequence. All data on channel A, including the probe telemetry and the planned DWE measurements, were thus lost.

The channel A signal was monitored on Earth during the Huygens mission at fifteen radio telescopes, six of which recorded ground- based DWE measurements of the carrier frequency. Details on the participants in the radio astronomy segment of the Huygens mission, the observation campaign, and plots of the raw data are given in Supplementary Information. Only the data sets from the NRAO Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and the CSIRO Parkes Radio Telescope in Australia have been processed for this initial report.

(略)

Results

The zonal wind derived from the ground-based Doppler data is shown in Fig. 1 as a function of time. More precisely, this quantity is the horizontal eastward velocity of Huygens with respect to the surface of Titan (with a positive value indicating the prograde direction). The time-integrated wind measurement from t0 yields an estimate for the longitude of the Huygens landing site on Titan, 192.33 0.318 W, which corresponds to an eastward drift of 3.75 0.068 (165.8 2.7 km) over the duration of the descent. Unfortunately, because of the slow rotation of Titan and the fact that the Earth was near zenith as viewed by Huygens, the Doppler data recorded after landing are not considered suitable for a more precise determination of the Huygens longitude.

The variation of the zonal wind with altitude and pressure level is shown in Fig. 2. The measured profile roughly agrees with the upper level wind speeds anticipated by the engineering model, and is generally prograde above 14 km altitude. Assuming this local observation is representative of conditions at this latitude, the large prograde wind speed measured between 45 and 70 km altitude and above 85km is much larger than Titan’s equatorial rotation speed (Qa < 11.74 m s21, where Q 1⁄4 4.56 £ 1026 rad s21 and a 1⁄4 2,575 km are Titan’s rotation rate and radius, respectively), and thus represents the first in situ confirmation of the inferred superrotation of the atmosphere at these levels, as anticipated from the Voyager temperature data3. Moreover, the measured winds are consistent with the strong winds inferred from ground-based data under the assumption of cyclostrophic balance

9.2.5  Sura and Perron (2010)

Sura, P.,Perron, M. (2010). Extreme Events and the General Circulation: Observations and Stochastic Model Dynamics. Journal Of The Atmospheric Sciences, 67(9), 2785–2804. doi:10.1175/2010JAS3369.1

Abstract

This study explores the dynamical role of non-Gaussian potential vorticity variability (extreme events) in the zonally averaged circulation of the atmosphere within a stochastic framework. First the zonally averaged skewness and kurtosis patterns of relative and potential vorticity anomalies from NCEP–NCAR reanalysis data are presented. In the troposphere, midlatitude regions of near-zero skewness coincide with regions of maximum variability. Equatorward of the Northern Hemisphere storm track positive relative/potential vorticity skewness is observed. Poleward of the same storm track the vorticity skewness is negative. In the Southern Hemisphere the relation is reversed, resulting in negative relative/potential vorticity skewness equatorward, and positive skewness poleward of the storm track. The dynamical role of extreme events in the zonally averaged general circulation is then explored in terms of the potential enstrophy budget by linking eddy enstrophy fluxes to a stochastic representation of non-Gaussian potential vorticity anomalies. The stochastic model assumes that potential vorticity anomalies are advected by a random velocity field. The assumption of stochastic advection allows for a closed expression of the meridional enstrophy flux: the potential enstrophy flux is proportional to the potential vorticity skewness. There is some evidence of this relationship in the observations. That is, potential enstrophy fluxes might be linked to non-Gaussian potential vorticity variability. Thus, extreme events may presumably play an important role in the potential enstrophy budget and the related general circulation of the atmosphere.

Introduction

The empirical and dynamical study of the general circulation of the atmosphere can be rightfully considered to provide the foundations of modern meteorology, climatology, and related fields. In its broadest sense the atmospheric general circulation may be regarded to encompass all motions that are needed to characterize the large and global-scale atmospheric flow (e.g., Holton 1992; James 1994; Vallis 2006). The time-mean circulation is the most relevant, first-order property we are interested in (zeroth order being a resting atmosphere). It is, of course, well known that the mean atmospheric circulation cannot be understood without knowing some statistics of fluctuations (eddies) around the mean. The mean and fluctuations of the general circulation are intricately linked through eddy fluxes of primarily heat, momentum, and vorticity (or enstrophy). The zonal eddy flux of temperature, for example, is the dominating mechanism redistributing heat from the tropics to the poles. In other words, to dynamically describe the mean circulation we need to know some second-order statistics (variances, correlations) of relevant quantities. For example, the zonally averaged poleward eddy flux by transient waves is given by the covariance [y9T9], where y9 and T9 denote transient fluctuations of meridional velocity and temperature, respectively; [x9] denotes the zonal and x9 the temporal averages of the quantity x9.

(略)

Sura and Sardeshmukh (2008) and Sardeshmukh and Sura (2009) tried to fill this gap by analyzing local non-Gaussian oceanic and atmospheric variability in a stochastic–dynamical framework. Their theory attributes extreme anomalies to stochastically forced linear dynamics, where the strength of the stochastic forcing depends on the flow itself (multiplicative noise). Because stochastic theory makes clear and testable predictions about non-Gaussian variability, the multiplicative noise hypothesis can be verified by analyzing the detailed non-Gaussian statistics of oceanic and atmospheric variability. In fact, Sura and Sardeshmukh (2008) and Sardeshmukh and Sura (2009) did just that for sea surface temperature and atmospheric geopotential height and vorticity anomalies, thereby confirming the multiplicative noise hypothesis of extreme events for the respective variables.

This paper studies the role of higher-order (non-Gaussian) statistics in the dynamics of the general circulation. Section 2 discusses the non-Gaussianity of the atmospheric general circulation using daily National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis data, focusing on zonally averaged relative and potential vorticity (PV) statistics. In section 3 we discuss the zonally averaged circulation in terms of the potential enstrophy budget. In particular, we elucidate the dynamical role of extreme atmospheric events in the zonally averaged general circulation by linking eddy enstrophy fluxes to a stochastic representation of potential vorticity anomalies. Finally, section 4 provides a summary and discussion.

Observations

In this section we will present non-Gaussian attributes of the atmospheric general circulation from daily NCEP– NCAR reanalysis data. Because most of the previous studies focused on the horizontal distribution of extreme events and higher-order statistics (skewness and kurtosis), we will pay particular attention to the height dependence of non-Gaussian statistics. That is, here the focus will be on the zonally averaged non-Gaussian statistics of the general circulation.

(略)

We use the full 60-yr record because the reliable estimation of higher-order statistics needs rather long time series to reduce the standard errors as much as possible. However, it is known that the reanalysis data are not very reliable in the Northern Hemisphere before 1958 or before the mainstream meteorological satellite era (1979) in the Southern Hemisphere (Kistler et al. 2001). Thus, the reanalyses more reflect the model than the actual atmosphere in the mentioned periods and regions. Given that today’s models are very reliable on synoptic and large scales, and we are primarily looking at the statistics of large-scale flows, we are not expecting major biases in the troposphere by using the full record. In the troposphere we might observe biases, however. To make sure that our findings are stable, we will later also present the main results of our analysis for the periods 1958–2007 and 1979–2007.

9.2.6  Riessen et al. (2010)

Grant van Riessen et al 2010 J. Phys.: Condens. Matter 22 092201 doi: 10.1088/0953-8984/22/9/092201

Abstract

We have measured the correlated electron pair emission from a Cu(001) surface by both direct and core-resonant channels upon excitation with linearly polarized photons of energy far above the 3p threshold. As expected for a single-step process mediated by electron correlation in the initial and final states, the two electrons emitted by the direct channel continuously share the sum of the energy available to them. The core-resonant channel is often considered in terms of successive and independent steps of photoexcitation and Auger decay. However, electron pairs emitted by the core-resonant channel also share their energy continuously to jointly conserve the energy of the complete process. By detecting the electron pairs in parallel over a wide range of energy, evidence of the core-resonant double photoemission proceeding by a coherent single-step process is most strikingly manifested by a continuum of correlated electron pairs with a sum energy characteristic of the process but for which the individual electrons have arbitrary energies and cannot meaningfully be distinguished as electron.

Introduction

The emission of two electrons from a solid surface upon the absorption of a single photon has become of much current interest due to the decisive role played by electron–electron correlation in such processes. Because of the single-particle nature of the dipole interaction, the electric field of the photon directly interacts with only a single electron. However, if the photon energy exceeds the double photoemission (DPE) threshold, two interacting electrons may be directly emitted from the valence band, sharing the photon energy in excess of that needed to eject both of them [1]. Detecting the emitted pair in coincidence with energy and momentum discrimination yields observables relevant to the electron–electron interaction in the solid [1–7]. When the energy of the incident photon exceeds the binding energy of a core-level electron, the electron is excited to the continuum above the vacuum level. A second electron may be excited to the continuum by an Auger (autoionization) transition in which the core–hole is annihilated, leaving two holes in the valence band. Auger photoelectron coincidence spectroscopy (APECS) has been developed to study this process, motivated also by the ability to yield information not directly accessible by single-electron spectroscopy [8–16]. (略)

Experimental details

A new two-electron coincidence spectrometer for surfaces was implemented by combining two hemispherical energy analysers (Scienta R4000, Sweden) with wide-angle transfer lenses. The analysers were modified by the installation of two-dimensional detectors (microchannel plates (MCP) and resistive anodes) and the lenses are operated in customized modes optimized for the requirements of high transmission with large pass energy, low mean kinetic energy and small temporal dispersion. Angular dispersion characteristics are compromised to achieve these requirements and only energy information was recorded. Constant energy resolution can be preserved independently of the electron kinetic energy, which allows DPE experiments to be extended to photon energies previously inaccessible with time-of-flight spectrometers which presently cannot achieve comparable energy resolution beyond energies 50 eV [2, 6].

The spectrometer was installed at the UE56/2-PGM-2 beamline at the BESSY II storage ring [19]. Figure 1 schematically illustrates the geometry of the experiment. Linearly polarized radiation of energy 125 eV was incident upon a Cu(001) surface at a grazing angle of 10◦. Electrons emitted within the solid angle of collection of the lenses are transported to hemispherical analysers that energetically disperse the electrons onto the detectors. The optical axes of the lenses define the scattering plane and are separated by 90◦ with one axis in the plane of the storage ring and the other perpendicular to it. The sample was oriented such that the mean take-off angles for the horizontal and vertical analyser with respect to the surface normal were 15◦ and 75◦, respectively.

Each analyser was operated in a mode that allowed the collection of electrons within an angular range of ≈30◦ within the xy plane (figure 1) and, simultaneously, within a 30 eV energy range centred at 50 eV. The energy range recorded in parallel by each analyser is partitioned respectively into discrete values E1 and E2 for the vertical and horizontal analysers in order to represent two-dimensional (2D) electron pair energy distributions. The total energy resolution for each analyser was ≈0.8 eV. Consequently the total energy resolution for electron pairs was ≈1.1 eV. All kinetic energies were measured with respect to the vacuum level of the Cu(001) surface. (略)

Experimental results

Figure 2(a) shows a histogram of arrival time differences t for all detected pairs from a Cu(001) surface upon excitation with linearly polarized photons of energy 125 eV. The area of the prominent peak (shaded) at t = 0 ns that lies above the flat background is a measure of the total number of true coincidences. Its width tc is consistent with an estimation of the temporal resolution by simulating the dominant contribution of time dispersion through the electron optics. The number of correlated events (true coincidences) Nt is found from the total number of counts within a region of width tc centred on the peak minus the number of random coincidence events in the same area which is estimated from the average intensity away from the peak.

The 2D energy distribution of correlated electron pairs (true coincidences) detected from the Cu(001) surface upon excitation with 125 eV photons is presented in figure 2(b). This data is obtained by determining the number of true coincidences at each locus (E1, E2) by the method described above. Several distinctive spectral features appear that have not previously been observed together in a single spectrum from a solid surface. The highest energy structure is related to the onset of direct DPE. Below that there are three regions of interest labelled as A, B and C which are situated around (E1,E2) = (56 eV,46 eV), (46 eV, 56 eV) and (46 eV, 58 eV), respectively. These regions correspond to the nominal energy of 3p photoelectrons and M2,3–M45M45 Auger electron pairs, i.e. the process studied by APECS. Their structure in and between these regions is considered in more detail below. The difference in the sum energy of the detected pairs emitted by these processes will be discussed elsewhere. (略)

Conclusions

We have presented the two-particle emission spectra from a Cu(001) surface upon excitation with linearly polarized photons with sufficiently high energy to excite the 3p core level. We observe both direct DPE and core-resonant DPE in the same spectrum. The final state of both processes contain two holes in the d-band but is distinguished on the basis of the total energy available to the pair. In the energy sharing distribution of electron pairs, the direct DPE manifests as a continuum without discrete structure. Pairs emitted by core-resonant double photoemission are also clearly shown to share their total energy continuously while jointly conserving the energy of the complete process. The energy of both electrons is not constrained to the energy they are observed to have when detected independently. These results confirm that core-resonant double photoemission must be described by a coherent single-step process in which the emitted electrons represent a correlated two-particle state. Detailed comparison of the dynamics of direct double photoemission and core- resonant double photoemission is currently being investigated for different scattering geometries and photon energies and is expected to yield further insight into the role of correlation in these processes.

9.3  be動詞にみる時制の割合

実際の論文を見てみると、参考文献で述べられているように「先行研究 = 現在形」「自分の今の研究 = 過去形」という関係は、自分の周辺分野(大気力学)では成り立っていないようである。

そこで、be動詞 を抽出し be動詞全体に対する現在形(is, are)、 過去形(was, were)と完了形(been)の比率を調べてみた。

まず、数値実験と理論の論文
・Vallis, G. K. and Farneti, R. 2009. Meridional Energy Transport in the Atmosphere-Ocean System. Scaling and Numerical Experiments. Quart. J. Roy. Meteor. Soc., 135, 1643-1660, doi:10.1002/qj.498
では
  現在形: 97%、過去形: 3%、完了形: 0%
で現在形が大半を占める。

次に、室内実験の論文
・Thomas, P.J.Linden, P.F. 2010 Laboratory modelling of the effects of temporal changes of estuarine-fresh-water discharge rates on the propagation speed of oceanographic coastal currents. J. Fluid Mech., 664, 337-347
では
  現在形: 58%、過去形: 40%、完了形: 2%
で過去形が4割を占める。

そして、化学実験の論文
・Synthesis of Heterocyclic Homotriptycenes. (2011). Synthesis of Heterocyclic Homotriptycenes, 76(14), 5531–5538. doi:10.1021/jo200110w では
  現在形: 24%、過去形: 72%、完了形: 4%
で過去形は7割を占める。

ここには記さないが、同様の手法の他の論文もおおよそ、同じような割合で現在形と過去形が使用されている。

9.4  考察

結局、自分の周辺分野 (大気力学・地球流体力学) では、多くの参考書で挙げられている、時制の区別 「先行研究 = 認められた一般的な知識 = 現在形」「自分の今の研究 = まだ認められていない知識 = 過去形」 にそっていないようだ。

自分の今の研究も現在形で書くかどうかは、おそらく、「再現性が自明かどうか」によるのではなかろうか。

たとえば、「紙と鉛筆」でおえるような、数学の論文は、現在形で書かれてて不自然ではない。逆に、 “Adding 1 to 2, we obtained 3” なんて書いたら、「(一般にはどうか分からないが) そのときは2に1を足したら3を得た。」という文意になってしまう。

数学の論文と同様に、主に数学を用いて記述される力学などの理論も、 現在形が相応しいように思う。

一方、実験室で行うような、(実在するものを用いて行う)実験結果に関する論文は、 自分の実験結果が、再現性を有しているかが自明ではないので、 「(少なくとも自分がやったら、そのときは)こうなった。」という意味で、過去形が相応しいように思う。 これは、化学実験や実験流体を用いた室内実験などは、著者が全く気づいていない未知のファクター によって結果が変わる、という可能性があるからだろう。

同様に、自然現象の観測結果に関する記述をする際も、「自分が観測したときは、そうだった。」 という意味で過去形が適切だろう。

しかし、JRA-25のように公開されている、再解析データセットを利用した「データ解析」の場合は、 同じデータを用いれば、同じ結果が得られるのは自明なので、現在形なのだろう。 (逆にそのような研究は、そのデータセットに関する研究であることを意識する必要がある。)

では、数値実験がどうか。数値実験の場合、自分で制御できないファクターは普通ないので、 (計算機のソフト・ハードに未知のバグはないという前提で) 計算方法、設定条件の説明を尽くせば、数値実験の結果は「再現性が保証されている」ような気がする。

なら、数値実験に関する計算方法や設定条件の説明は現在形か?過去形か? いろいろと論文を見て回ると、現在形が多いように感じる。 でも過去形や現在完了形で書かれている論文もある。


This document was translated from LATEX by HEVEA.