
Random stretching

December 7, 2000

1 Overview

In the previous lecture we emphasized that the destruction of tracer variance
by molecular diffusivity relies on the increase of ∇c by stirring. Thus the
term κ〈∇c′·∇c′〉 in the variance budget eventually becomes important, even
though the molecular diffusivity κ is very small. One goal of this lecture
is to understand in more detail how tracer gradients in a moving fluid are
amplified by simple velocity fields. We will assume that κ = 0 so that there
stirring without mixing. This is a good approximation provided that the
smallest scale in the tracer field is much greater than the length � =

√
κ/α

which we identified in lecture 1.
Gradient amplification is closely related to the stretching of material lines,

a subject which was opened by Batchelor in 1952. A material line is a
curve which consists always of the same fluid particles. Batchelor’s main
conclusion is that there is a timescale governing the ultimate growth of an
infinitesimal line element, but no length scale other than that of the element
itself. These dimensional considerations force the conclusion that the element
grows exponentially,

� = �0e
γt , (1)

where γ is a constant.
Just as some close particle pairs separate exponentially, other pairs start-

ing at distant points are brought close together. This might seem paradoxical
until one recalls the folded tracer patterns evident in Welander’s 1955 exper-
iments (see the final figures in lecture 1). If two closely approaching particles
are carrying different values of c then the gradient ∇c will be amplified.
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Thus, as a corollary of (1) we expect that |∇c| ∼ |∇c0| exp(γt). It is through
this exponential amplification of the concentration gradients that the small
molecular diffusivity κ is able eventually to destroy tracer variance.

The random Couette process

The simplest model of exponential stretching is the steady stagnation point
flow, u = (αx,−αy). All line elements eventually grow exponentially in
this simple flow. This example of exponential stretching gives the mistaken
impression that hyperbolic stagnation points play an essential role in the
process. To show that hyperbolic stagnation points are inessential, we con-
sider stretching by the Couette flow u = (0, βy). If we release a material line
element ξ = �0(cos θ1, sin θ1) in this Couette flow then at time t the element
is

ξ(t) = �0(cos θ1 + βt sin θ1, sin θ1) . (2)

The length of this element at t is

�2(t) =
[
1 + βt sin 2θ1 + β2t2 sin2 θ1

]
�20 . (3)

Notice that when βt is large �(t) grows linearly with time, which is very
different from the exponential growth in (1).

However, suppose we stop the elongation in (2) at t = τ and renovate the
process by starting a new Couette flow at a random angle to the first. We
can implement this sudden change in direction by taking a new angle, say
θ2, in (2) and replacing �0 by �1 ≡ �(τ). Thus the random Couette process
is constructed by renovating at t = nτ with a fresh angle θn in each epoch.
After n iterations

�2(nτ) =
n∏

k=1

s2(θn)�20 . (4)

where the random stretching factor is s2(θ) ≡ 1 + βτ sin 2θ + β2τ 2 sin2 θ. In
other words, the length of the element after at t = nτ is the product of n
independent and uniformly distributed random stretches, s(θk) where θk is a
random angle uniformly distributed in [0, 2π].

Computing averages of the random product in (4) we discover that the
asymptotic growth of the “average” length is exponential, as anticipated in
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Figure 1: The exponents of the random Couette process, γ0/β in problem 1.1 and
γ2/β in (7), as functions of βτ .

(1). This exponential growth happens even though the elements grow only
linearly with time in a steady Couette flow: the random realignment which
happens at t = nτ is crucial in increasing the efficacy of stretching.

Since the average over θ of s2(θ) is 〈s2〉 = 1 + (β2τ 2/2), the simplest
characterization of stretching by the random Couette process is

〈�2(nτ)〉 =

(
1 +

1

2
β2τ 2

)n

�20 . (5)

Noting that n = t/τ , we emphasize the similarity to (1) by rewriting (5) as

√
〈�2(t)〉 = eγ2t�0 , (6)

where the stretching exponent is

γ2 =
1

2τ
ln

(
1 +

β2τ 2

2

)
. (7)

The exponent γ2 in (7) has a nonmonotonic dependence on the nondi-
mensional parameter βτ : γ2/β is maximized if βτ ≈ 4 (see figure 1). When
the correlation time is small (βτ 
 1) we have γ2 ≈ β2τ/4; increasing the
correlation time means more stretching because the velocity acts coherently
for longer intervals. But in the other limit, βτ → ∞, we see that γ2 → 0. In
this limit stretching is ineffective because advection by a persistent velocity
means that the element spends a lot of time inefficiently aligned with the
direction of the velocity.
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Stretching exponents

Various measures of stretching are provided by the p’th-stretching exponent,
γp. Following Drummond & Münch (1990), we define γp, as

γp ≡ lim
t→∞

1

p〈�p〉
d〈�p〉
dt

, p > 0 . (8)

Why should we care about these stretching exponents γp? Why not stop with
γ2, which is the easiest γp to evaluate? Why does the literature on random
stretching emphasize γ0, defined by

γ0 ≡ lim
p→0

γp = lim
t→∞

d

dt
〈ln �〉 , (9)

so strongly? Answering these questions requires an excursion into the pecu-
liar properties of multiplicative random variables (see section 2).

Problem 1.1. Show that for the two-dimensional random Couette process

γp =
1
pτ

ln
[

1
2π

∮ (
1 + βτ sin 2θ + β2τ2 sin2 θ

)p/2
dθ

]
, (10)

and

γ0 =
1
2τ

∮
ln

[
1 + βτ sin 2θ + β2τ2 sin2 θ

]
dθ , (11)

=
1
2τ

ln
(

1 +
β2τ2

4

)
. (12)

Compare the analytic results for γ0 and γ2 with a Monte Carlo simulation of random
Couette line stretching (see figure 2).

Problem 1.2. Formulate and solve a renovation model based on randomly reorienting the
straining flow ψ = αxy at t = nτ . Calculate some stretching exponents. Are these
exponents greater or less than α?

Problem 1.3. Generalize the Random Couette process to three dimensions. Show that

γ2 =
1
2τ

ln
[
1 +

β2τ2

3

]
.(check this!) (13)

2 Multiplicative random variables

We begin with some general remarks about multiplicative random processes,
such as the random product in (4). Suppose that a random quantity, X, is
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Figure 2: A comparison of the exponents γ0 and γ2 with a simulation (the dotted
curves) of the random Couette process. To get reasonable agreement between the
simulation and the analytic result in (7) one must ensemble average over a large
number of realizations (4000 in the figure above). The discrepancies evident at
large iteration number, n = t/τ can be reduced by using more realizations.

formed by taking the product of N independent and identically distributed
random variables

X = x1x2 · · ·xN . (14)

What can we say about the statistical properties of X?
The most nonintuitive aspect of X in (14) is the crucial distinction which

must be made between the mean value of X and the most probable value
of X. As an illustration, it is useful to consider an extreme case in which
each xk in (14) is either xk = 0 or xk = 2 with equal probability. Then the
sample space consists of 2N sequences of zeros and two’s. For all but one
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those sequences, X = 0; in the remaining single case X = 2N . Thus, the
most probable (that is, most frequently occuring) value of X is

Xmp = 0 . (15)

On the other hand, the mean of X is

〈X〉 ≡ sum all the X’s from different realizations

number of realizations
= 1 . (16)

Notice that one can also calculate 〈X〉 by arguing that 〈xk〉 = 1 and, since
the xk’s are independent, 〈X〉 = 〈xk〉N = 1.

The example above is representative of multiplicative processes in that
extreme events, although exponentially rare if N 
 1, are exponentially
different from typical or most probable events. Thus, for the product of
N random variables the ratio 〈X〉/Xmp diverges exponentially as N → ∞.
On the other hand, for the sum of N random variables the most probable
outcome is a good approximation of the mean outcome. Perhaps this is why
people have an intuitive appreciation of sums, but find products confusing.

Now let us consider a more realistic example in which each xk is either α
or 1/α with probability 1/2. In this case

〈xp
k〉 =

αp + α−p

2
, (17)

and, since the xk are independent, the p’th moment of X is

〈Xp〉 =

(
αp + α−p

2

)N

. (18)

We show in (21) that because 〈lnxk〉 = 0 the most probable value of X
is Xmp = 1. For example, if α = 2 then 〈X〉 = (5/4)N , while Xmp = 1.
Again, the most probable value differs exponentially from the mean value as
N → ∞.

The log-normal distribution

Because Xmp is so different from the 〈X〉 the problem of determining 〈X〉
via Monte Carlo simulation is difficult. For example, consider again the
multiplicative process in which xk = 0 or xk = 2 with equal probability.
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There are 2n points in the sample space and with a monte Carlo calcualtion
one would have to exhaust nearly all of the 2N cases in order to obtain
a reliable estimate of 〈X〉 = 1. This exhaustion is necessary for the first
example, in which xk = 0 or 2. In the example of equation (17), provided that
α ≈ 1, we can get a pretty good estimate of 〈X〉 with less than exhaustive
enumeration of all sequences of the xn’s.

Begin by noting that

lnX = lnx1 + lnx2 + · · · + lnxN , (19)

and so if lnxk has finite variance then it follows from the Central Limit
Theorem (CLT) that Λ ≡ lnX becomes normally distributed as N → ∞.

The pitfall is in concluding that all the important statistical properties of
Λ, and therefore of X = exp(Λ), can be calculated using the asymptotic log-
normal distribution of X. This not the case because the PDF of Λ, P(Λ),
is approximated by a Gaussian only in a central scaling region in which
|Λ| < cN1/2, where c is some constant which depends on the PDF of xk.
On the other hand, a reliable calculation of 〈Xp〉 = 〈exp(pΛ)〉 may require
knowledge of the tail-structure of P(Λ).

To illustrate these difficulties, we use the example in which lnxk = ± lnα
and 〈ln2 xk〉 = ln2 α. Invoking the Central Limit Theorem, the asymptotic
PDF of Λ is therefore

PCLT(Λ) =
1√

2πN ln2 α
exp

(
−Λ2/2N ln2 α

)
. (20)

In the central scaling region, P(Λ) ≈ PCLT(Λ).
To determine Xmp we can consider Λ = lnX, which is an additive pro-

cess for which the mean and most probable coincide (〈Λ〉 = Λmp) and conse-
quently

Xmp = e〈ln X〉 . (21)

In our previous example with lnxk = ± lnα, 〈lnX〉 = 0 and Xmp = 1.
Continuing with this example, we now attempt to recover the exact result

in (17) by substituting (20) into

〈Xp〉 ≡
∫ ∞

−∞
epΛP (Λ) dΛ. (22)
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Figure 3: The function r(α, p) defined in (24). In order to accurately estimate
〈Xp〉 using the CLT one must have r ≈ 1.

After the integration, one finds that

〈Xp〉CLT = exp
(
Np2 ln2 α/2

)
. (23)

To assess the error we form the ratio of the exact result to the approximation:

〈Xp〉/〈Xp〉CLT = rN , where r ≡ 1

2
exp

(
−p2 ln2 α/2

) (
αp + α−p

)
. (24)

When r(α, p) is close to 1, the error is tolerable in the sense that ln〈Xp〉CLT

is close to ln〈Xp〉; the function r(α, p) is shown in figure 3.
For example, with α = 2, the exact result is 〈X〉 = (5/4)N while 〈X〉CLT =

(1.27)N . However the second moment p = 2, is seriously in error. As a general
rule, 〈Xp〉CLT is a reliable estimate of 〈Xp〉 provided that p2〈ln2 xk〉 < c,
where c is the constant which determines the width of central scaling region,
|Λ| < cN1/2, in which P(Λ) ≈ PCLT(Λ). We conclude that the complete
analysis of a random multiplicative quantity cannot be reduced to the Central
Limit Theorem merely by taking a logarithm.
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Stretching exponents again: why is γ0 important?

Equation (21) is a very important result for multiplicative random variables:
to obtain the most probable value of X, exponentiate 〈lnX〉. This explains
why there is so much attention paid to 〈ln[�(t)/�0]〉. The average of the
logarithm enables one to estimate the stretching of a typical line element.
Of course, the typical line element may not make a large contribution to the
dissipation κ〈∇c′ · ∇c′〉. Thus our earlier focus on �2 in (5) and (7) was not
wasted, but it was not complete either.

3 Material line elements and tracer gradients

Now we return to fluid mechanics and discuss random stretching more sys-
tematically. Using a geometric argument, see figure 4, we can give a proof-by-
intimidation that a material line element, ξ(x, t), attached to a fluid element
evolves according to

Dξ

Dt
= (ξ·∇)u . (25)

The field of line elements can be visualized a collection of tiny straight arrows
attached to each moving particle of fluid. Then (25) describes the evolution
of this collection of arrows. Notice that (25) refers to an infinitesimal line
element ξ. If the length of a material line is comparable to the scale of u
there is no longer a simple relation between the stretching of the material
line and local properties of u, such as ∇u.

Taking the gradient of the tracer equation

Dc

Dt
= 0 , (26)

gives

D∇c

Dt
= −(∇c·∇)u . (27)

Despite the difference in the sign of the right hand sides of (25) and (27)
there is a close connection between the solutions of the two equations.

To emphasize the connection between ∇c and ξ, we mention the conser-
vation law

D

Dt
(∇c·ξ) = 0 . (28)
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x + u(x, t) δt

x + ξ + u(x + ξ , t) δt

ξ + δξ

x + ξ

ξ

x

Figure 4: The line element ξ is short enough to remain straight and to experience
a strain which is uniform over its length during the time δt. Proof by intimidation
of (25) : δξ = [u(x + ξ, t) − u(x, t)]δt, and take (δt, ξ) → 0.

(Meteorologists and oceanographers might recognize (28) as a relative of
potential vorticity conservation.) In section 5 we use (28) is used to deduce
∇c from ξ.

The easy way to prove (28) is to consider a pair of particles separated by
a small displacement ξ. If the concentration carried by the first particle is
c1, and that of the second particle is c2 = c1 +dc, then dc = ξ·∇c. Thus (28)
is equivalent to the “obvious” fact that dc is conserved as the two particles
move.

The difficult way to prove (28) is to take the dot product of ∇c with (25)
and add this to the dot product of ξ with (27). Performing some nonobvious
algebra, perhaps with Mathematica or Maple, one can eventually simplify
the mess to (28). Suffering through this tedious exercise will convince the
student that the earlier, easy proof is worthy of serious attention.

Eulerian versus Lagrangian: the golden rule

Particle trajectories, x = x(t,x0), are determined by solving the differential
equations

Dx

Dt
= u(x, t) , x(0) = x0 . (29)
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The solution of the differential equation above defines the particle position,
x, as a function of the two independent variables, x0 and t. Using this
time-dependent mapping between x and x0, we can take a problem posed in
terms of x and t (the Eulerian formulation) and change variables to obtain
an equivalent formulation in terms of x0 and t (the Lagrangian formulation).

In the Eulerian view, the independent variables are x = (x, y, z) and t.
The convective derivative,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
, (30)

is a differential operator involving all of the independent variables.
In the Lagrangian view, the independent variables are x0 and t′ and

x(x0, t
′) is a dependent variable. As an accounting device, the time variable

is decorated with a prime to emphasize that a t′-derivative is means that the
independent variables are x0. To move between the Eulerian and Lagrangian
representations notice that

∂t

∂t′
= 1 , and

∂

∂t′
(x, y, z) = (u, v, w) . (31)

The second equation above is the definition of velocity, u = (u, v, w).
Using (31), the rule for converting partial derivatives is

∂

∂t′
=

∂

∂t
+
∂x

∂t′
∂

∂x
+

∂y

∂t′
∂

∂y
+

∂z

∂t′
∂

∂z
=

D

Dt
. (32)

Equation (32) is the golden rule which enables us to interpret expressions
such as

D

Dt
unknown = RHS , (33)

in either Eulerian or Lagrangian terms. Using the golden rule we can dis-
pense with the prime which decorates the Lagrangian time variable: we just
remember that D/Dt is freighted with both a Lagrangian and an Eulerian
interpretation.

In the Eulerian interpretation we must express the RHS in (33) as a func-
tion of x, y, z and t and use the Eulerian definition of the convective derivative
in (30). Then (33) is a partial differential equation for the unknown.

In the Lagrangian interpretation D/Dt is the same as a simple time
derivative and we must express the RHS of (33) as a function of x0, y0,
z0 and t. Then (33) is a ordinary differential equation for the unknown.
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Motion is equivalent to mapping

We obtained (25) using the geometric argument in figure 4. Now we admire
some different scenery by taking an algebraic path to (25). Our itinerary
emphasizes that the solutions of (29) define a mapping of the space x0 of
initial coordinates onto the space x, and hence the title of this section.

Using indicial notation (summation implied over repeated indices), it fol-
lows from the chain rule that

dxi =
∂xi

∂x0j

dx0j. (34)

Taking the time derivative of (34), and keeping in mind that x0j is indepen-
dent of t, gives

D

Dt
(dxi) =

∂ui

∂x0j

dx0j =
∂ui

∂x0j

∂x0j

∂xk

dxk =
∂ui

∂xj

dxj . (35)

(We have used the golden rule.) Making the identification dx → ξ we obtain
(25).

The motion of a fluid defines a family of mappings from the space of
initial coordinates, x0, onto the space of coordinates x. At t = 0 this is just
the identity map but as t increases the map from x0 to x can become very
complicated. Equation (34) defines the Jacobian matrix,

J ij ≡
∂xi

∂x0j

, (36)

of the map.
With these algebraic formalities we have given an alternative derivation

of (25) and, as a bonus, we have also found a representation of the solution:

ξ = J ξ0 . (37)

The expression above is Cauchy’s solution of (25).
In (37) there is no assumption that the flow is incompressible. If the flow

is incompressible (i.e., if ∇·u = 0) then mapping from x0 to x conserves
volume. In this case, det J = 1.

Problem 3.1. Solve the line-stretching equation (25) in the special case where u is a steady
unidirectional two-dimensional velocity field, u = [u(y), 0].
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Solution. Begin by noticing that the solution of (29) is

x = x0 + u(y)t , y = y0 . (38)

Thus it is a simple matter to express (x, y) in terms of (x0, y0) and vice versa.
The line-stretching equation, (25), has the same form as (33). Using components,

ξ = (ξ, η), we have

Dξ

Dt
= ηu′(y0) ,

Dη

Dt
= 0 . (39)

Using the golden rule we view (39) in Lagrangian varaibles so that we have an ordinary
differential equation with the solution

ξ = ξ0(x0, y0) + tη0(x0, y0)u′(y0) , η = η(x0, y0) . (40)

Using (38), we can write (40) in terms of Eulerian variables as

ξ = ξ0[x− u(y)t, y] + tη0[x− u(y)t, y]u′(y) , η = η0[x− u(y)t, y] . (41)

We can alternatively view (39) in terms of Eulerian variables and in this case we are
confronted with the partial differential equations

∂ξ

∂t
+ u(y)

∂ξ

∂x
= ηu′(y) ,

∂η

∂t
+ u(y)

∂η

∂x
= 0 . (42)

It is easy to check by substitution that (41) is the solution of (42).
Problem 3.2. Consider a one-dimensional compressible velocity u = sinx. Solve the line-
stretching equation

ξt + sinx ξx = ξ cosx , ξ(x, 0) = 1 , (43)

with the initial condition that ξ(x, 0) = 1.
Solution. Begin by observing that the density ρ(x, t) satisfies

ρt + (sinx ρ)x = 0 ρ(x, 0) = 1. (44)

It is easy to show by substitution that the solutions of (43) and (44) are related ρ(x, t) =
1/ξ(x, t). The physical interpretation of this result should be obvious...

To solve (43), we follow the route outlined in section 3 by determining the mapping
from the initial space, x0, to the space x(x0, t). This means we solve

Dx

Dt
= sinx, x(0, x0) = x0 . (45)

Using separation of variables we find that

tan(x/2) = et tan(x0/2) , (46)

which enables us to determine x given x0, or vice versa. Figure 5 shows how the mapping
from x0 to x evolves as t increases. The Jacobian of the mapping in (46) is

dx
dx0

=
1

cosh t− cosx0 sinh t
= cosh t+ cosx sinh t . (47)

It is easy to check that ξ = dx/dx0 is the solution of (43).
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Figure 5: The left panel shows the mapping from x0 to x at the indicated times.
The interval 0 < x0 < π is compressed into the neighbourhood of x = π. The
right panel shows J(x0, t) at the same times. Notice that an element which starts
at say, x0 = 1/2, is first stretched (J > 1) but then ultimately compressed (J < 1)
as the particle approaches x = π.

Problem 3.3. Consider one-dimensional line-element stretching produced by an ensemble
of renovating sinusoidal velocity fields,

u = sin(x+ ϕn) if (n− 1)τ < t < nτ . (48)

The random phase, 0 < ϕn < 2π, is reset at t = nτ .
Solution. We follow the stretching of a line element attached to a particle which moves in
a particular realization of this velocity field. We denote location of this particle at t = nτ
by an, and the length of the attached line element at this time by �n. Then the stretching
of the line element is given by the random product

�n = J(an−1)J(an−2) · · ·J(a0)�0 , (49)

where the Jacobian is

J(a) ≡ 1
cosh τ − cos a sinh τ

. (50)

Because the phase is reset at t = nτ , each J(an) in (49) is independent of the others.
Moreover, because of spatial homogeneity, each an is uniformly distributed with 0 < an <
2π.

Equation (49) expresses the length of a material line element at t = nτ as a product of
n random numbers. Following our discussion of multiplicative random variables, we first
calculate γ0 by taking the logarithm of (49):

ln(�n/�0) =
n−1∑
k=0

lnJ(ak) , (51)
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Thus, the mean of ln(�n/�0) is

〈ln(�n/�0)〉 = n〈lnJ〉 , (52)

where

〈lnJ〉 =
∮

ln [J(a)]
da
2π

= − ln [cosh(τ/2)] . (53)

Because 〈(lnJ)2〉 is finite, the central limit theorem applies and we conclude that as
n→ ∞, ln(�n/�0) is approximately normally distributed with the mean value n〈lnJ〉.

Moreover, we can conclude from the central limit theorem that the most probable value
of �n/�0 is

(�n/�0)mp ≈ e〈ln(�n/�0)〉 = eγ0t , (54)

where, since n = t/τ ,

γ0 = − ln[cosh(τ/2)]/τ < 0 . (55)

The result in (54) is remarkable because it implies that most of the line elements in this
compressible flow exponentially contract (rather than stretch) as t→ ∞!

Exponential contraction of most material lines is incomplete disagreement with the
spirit of Batchelor’s result in (1), where γ > 0. The result above, that γ0 < 0, is a
special consequence of the compressible velocity field used in (48). (For a discussion of
compressible velocities in a space of arbitrary dimension, see Chertkov et al. (1998).) This
example shows that one cannot take exponential stretching for granted.

How is contraction in the length of most material elements compatible with conserva-
tion of the total length of the x-axis? Even though most elements become exponentially
small as t → ∞, a few elements become exponentially large. Thus most of the length
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accumulates in exponentially rare, but exponentially long, line elements. This is an el-
ementary example of an inverse cascade i.e., the spontaneous appearence of large-scale
structures (big line elements). To demonstrate length conservation, we can compute the
mean (as opposed the most probable) length of an element. The mean length is

〈�n〉 = 〈J〉n�0 , (56)

where J(a) is defined in (50) and

〈J〉 =
∮
J(a)

da
2π

= 1 . (57)

Thus, the mean length of an element is constant, even though most elements exponentially
contract.

One can show further that for integer values of p the stretching exponents of this
one-dimensional model are given by

γp = ln [Pp−1(cosh τ)] /pτ , (58)

where Pm is the m’th Legendre polynomial (see figure 6).

4 Two-dimensional incompressible flow

In the case of a two-dimensional incompressible flow there is a streamfunction
ψ = ψ(x, t) such that u = (u, v)=(−ψy, ψx). In terms of ψ, (25) can be
written as:

Dξ

Dt
= Wξ, where W ≡

(
−ψxy −ψyy

ψxx ψxy

)
. (59)

The trace of W is zero and the determinant is det(W ) = ψxxψyy −ψ2
xy. The

solution of (59) can be written as

ξ = exp

(∫ t

0

W (t′) dt′
)

ξ0 . (60)

Thus, using (37), we obtain a fundamental connection between J (t) and
W (t):

J (t) = exp

(∫ t

0

W (t′) dt′
)
. (61)
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Because tr W = 0 it follows1 that det J = 1. This is, of course, just another
way of saying that if the flow is incompressible then the map from x0 to x
is area preserving.

The steady case

Because (59) is linear the solution is straightforward if the velocity field in
the Lagrangian frame is steady. Thus

ξ(t) = eγtξ̂, ⇒ γ = ±
√
− det W , (62)

where

det W = ψxxψyy − ψ2
xy . (63)

There are three cases, which correspond to the three panels in figure 7:

Elliptic: If det W > 0, then γ is imaginary and the local streamfunction
has elliptic streamlines; ξ changes periodically in time and there is no
exponential stretching.

Hyperbolic: If det W < 0 then γ is real and the streamfunction is lo-
cally hyperbolic. Then, as in lecture 1, material line elements will be
stretched exponentially in one direction and compressed in the other.

Transitional: If det W = 0 then |ξ| grows linearly with time.

Following Okubo (1970) and Weiss (1991), the sign of detW has been
used to diagnose two-dimensional turbulence simulations (e.g., McWilliams
1984). Assuming that detW is changing slowly in the Lagrangian frame,
one argues that the result in (62) applies “quasistatically”. For instance,
using simulations of two-dimensional turbulence, McWilliams shows that in
the core of a strong vortex ψxxψyy − ψ2

xy > 0. The interpretation is that
there is no exponential stretching of line elements in vortex cores, which
indicates that these regions are isolated patches of laminar flow. This so-
called Okubo–Weiss criterion is only a very rough guide to the stretching

1For a square matrix M
det eM = etr M .
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det W>0 det W<0 det W=0

Figure 7: The sign of det(W ) = ψxxψyy −ψ2
xy determines the streamline pattern.

properties of complicated flows. The failure of the Okubo-Weiss criterion is
illustrated by the random Couette process of section 1, which corresponds to
the third panel of fgure 7 with detW = 0 at all time. For a further critique
of the Okubo-Weiss criterion, and more refined results, see Hua and Klein
(1999).

One pleasant aspect of the steady two-dimensional case is that it is pos-
sible to explicitly calculate the matrix exponential J (t) = exp(tW ). (This
is not the case in three dimensions.) Begin by noting that

W 2 + (det W )I = 0 , (64)

where I is the 2 × 2 identity matrix. The result above is easily checked
by direct evaluation, but (64) is also a consequence of trW = 0 and the
Cayley-Hamilton theorem. When (64) is substituted into the definition of
the matrix exponential:

J = exp (tW ) = I + tW +
t2

2
W 2 +

t3

6
W 3 + · · · (65)

the sum collapses to

J = cos
(√

det W t
)

I +
sin

(√
det W t

)
√

det W
W . (66)

We now use the result above to formulate a renovation model.
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The σ-ζ model

The “σ-ζ” model is a generalization of the random Couette process of section
1. The model is constructed using the matrix equation in (59). The idea is
to define an ensemble of stretching flows in which the 2 × 2 matrix W is
piecewise constant in the intervals In = {t : (n − 1)τ < t < nτ}; τ is
the “decorrelation time”. We use the following representation of W in the
interval In:

W n = Rn

[
ζn

2

(
0 −1
1 0

)
+
σn

2

(
−1 0
0 1

)]
R−1

n . (67)

where Rn is the rotation matrix

Rn =

(
cos θn sin θn

− sin θn cos θn

)
. (68)

Evaluating the matrix products gives

W n =
ζn

2

(
0 −1
1 0

)
+
σn

2

(
− cos 2θn sin 2θn

sin 2θn cos 2θn

)
. (69)

ζn is the vorticity and σn the strain. Isotropy is ensured by picking the
random angle 0 < θn < 2π from a uniform density. (We use 2θn because the
principal strain axes are at angle θn to the coordinate axes.)

Because W n is constant in In the calculation of stretching rates can be
reduced to a product of random matrices. The terms in the product are
exp(τW n) and, using (66), one can obtain this matrix exponential analyti-
cally. There is an extensive and difficult literature devoted to calculating the
statistical properties of products of random matrices (e.g., Crisanti, Paladin
& Vulpiani, 1993). It is fortunate that we can avoid these complications by
using the isotropy of the σ-ζ model to reduce averages of matrix products to
averages of scalar products.

Two important properties of W n are easily related to the vorticity and
the strain:

detW n =
1

4

(
ζ2
n − σ2

n

)
, tr

(
W T

nW n

)
=

1

2

(
ζ2
n + σ2

n

)
. (70)

In the examples which follow we will use σ-ζ ensembles which model spatially
homogeneous flows, for which 〈σ2〉 = 〈ζ2〉. In this case 〈detW n〉 = 0 and
“on average” the Okubo-Weiss criterion is zero.
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We employ (66) to obtain an explicit expression for the matrix J n =
exp(τW n). It turns out that we do not need the full details: all that is
required is

1

2
tr

(
J T

nJ n

)
= 1 + Ξ(σn, τn, τ) , (71)

where

Ξ(σ, ζ, τ) ≡ σ2

ζ2 − σ2

[
1 − cos

(√
ζ2 − σ2τ

)]
. (72)

The “trace formula” above should be known to experts on two-dimensional
stretching problems, but I have not found (71) in the literature.

The exponents γ2 and γ0 of the σ-ζ model

Consider the first interval I1, and suppose that at t = 0, ξ = �0(cosχ, sinχ).
At t = τ we have

�21 = ξT
0 J 1

TJ 1ξ0 . (73)

Now we use isotropy to average (73) over the random direction χ of the
element ξ0. A trivial calculation gives

〈(�1/�0)2〉χ =
1

2
tr

(
J 1

TJ 1

)
. (74)

The RHS of (74) is given explicitly in (71). We must still average over the
random variables σ and ζ. This gives

〈(�1/�0)2〉 = 1 +

∫ ∫
P(σ, ζ)Ξ(σ, ζ, τ) dσdζ , (75)

where P(σ, ζ) is the joint PDF of σ and ζ 2

2If σ and ζ are independent and identically distributed random variables then P(σ, ζ) =
P̂(σ)P̂(ζ). The random Couette model of section 1 is an example with

P(σ, ζ) =
1
4

[δ(σ + β) + δ(σ − β)] [δ(ζ + β) + δ(ζ − β)] .
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We are now well on our way to computing the rate at which �2 grows with
the number of renovation cycles, n. The average stretching of �2 in each In

is independent of the previous I’s. Thus, to compute the growth of �2 over n
renovation cycles, we can simply raise average �2-stretching factor in a single
I to the n’th power:

〈(�n/�0)2〉 =

{
1 +

∫ ∫
P(σ, ζ)Ξ(σ, ζ, τ) dσdζ

}n

. (76)

Using n = t/τ , and recalling the definition of γp from (8), it follows that

γ2 =
1

2τ
ln

{
1 +

∫ ∫
P(σ, ζ)Ξ(σ, ζ, τ) dσdζ

}
. (77)

To further simplify the integral above we must specify the probability density
function P(σ, ζ) (examples follow).

Now we turn to γ0. Taking the log of (73), writing ξ0 = �0(cosχ, sinχ),
and then integrating3 over χ, we have after some travail,

〈ln(�1/�0)〉χ =
1

2
ln

(
1 +

Ξ

2

)
, (78)

where Ξ(σ, ζ, τ) is given in (72). Averaging over σ and ζ, and using γ0 =
τ−1〈ln (�1/�0)〉, gives

γ0 =
1

2τ

∫ ∫
P(σ, ζ) ln

[
1 +

1

2
Ξ(σ, ζ, τ)

]
dσdζ . (79)

The expression above should be compared with that for γ2 in (77).

The Batchelor and Kraichnan limits

Our account of stretching exponents does not follow the historical path. The
pioneering papers by Batchelor (1959) and Kraichnan (1974) considered lim-
iting cases — slowly decorrelating in the case of Batchelor and rapidly decor-
relating in the case of Kraichnan — in which stretching rates can be calcu-
lated approximately. A major advantage of these approximations is that they

3The integral ∫ π

0

ln(a± b cosx) dx = π ln
[(
a+

√
a2 − b2

)
/2

]
,

is useful.
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work equally well in two and three dimensional space. On the other hand,
by considering exactly soluble two-dimensional models we can extract the
Batchelor and Kraichnan limits as special cases.

Batchelor (1959) considered stretching by slowly decorrelating velocity
fields. This is the limit in which ζτ and στ are large. Batchelor’s main
conclusion is that in this quasisteady limit the net stretching is dominated by
hyperbolic straining events. Batchelor’s limit is discussed further in problem
4.1.

Kraichnan (1974) considered the opposite limit in which ζτ and στ are
small. In this rapidly decorrelating limit we can simplify the exact expressions
in (77) and (79) by noting that Ξ ≈ (στ)2/2 
 1. This short-correlation time
approximation gives

γ0 ≈
1

8
〈σ2〉τ , and γ2 ≈

1

4
〈σ2〉τ . (80)

In this limit the exponents are independent of the vorticity and proportional
to the mean square strain.

The renovating wave model again

In this section we calculate the average growth of �2 using the renovating
wave (RW) model. It is interesting to see how this calculation can be done
without using matrix identities such as (66).

Begin by recalling the definition of the RW model. The RW streamfunc-
tion is

In = (n− 1)τ∗ < t < nτ∗ : ψn ≡ cos[cos θn x + sin θn y + ϕn]. (81)

In (81), θn and ϕn are random phases and τ∗ is the decorrelation time. The
random phases are reinitialized at t = nτ∗ so there is the complete and
sudden loss of memory at these instants. (In this section we use the dimen-
sionless version of the RW model; the parameter τ∗ ≡ τkU is the ratio of the
correlation time τ to the maximum shear of the sinusoidal wave kU .)

The renovating wave model is equivalent to the random map

(xn+1, yn+1) = (xn, yn) + (sn,−cn) sin[cnxn + snyn + ϕn]τ , (82)
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where (cn, sn) ≡ (cos θn, sin θn). The Jacobian matrix can easily be obtained
by differentiation of (82):

J (n) = eτ∗W (n)

=

[
1 + cnsnτ∗ψn s2

nτ∗ψn

−c2nτ∗ψn 1 − cnsnτ∗ψn

]
. (83)

Notice that det J (n) = 1: the map is area preserving.
Using J (n) we can track the stretching of an infinitesimal material element

as

ξn+1 = J (n)ξn, ⇒ �2n+1 = ξT
n+1ξn+1 = ξT

nK(n)ξn, (84)

where K(n) = J (n)TJ (n). Explicitly:

K(n) =

[
(1 + cnsnψnτ∗)

2 + c4nψ
2
nτ

2
∗ (s2

n − c2n)ψnτ∗ + cnsnψ
2
nτ

2
∗

(s2
n − c2n)ψnτ∗ + cnsnψ

2
nτ

2
∗ (1 − cnsnψnτ∗)

2 + s4
nψ

2
nτ

2
∗

]
. (85)

To compute the stretching rate we consider an element which has length
�0 at t = 0. Because the problem is isotropic, it is harmless to choose the
coordinate system so that this element lies along the x-axis: ξ0 = �0(1, 0).
After the first iteration of the map:

�21 = K(1)
11 �

2
0 =

[
(1 + c1s1ψ1τ∗)

2 + c41ψ
2
1τ

2
∗
]
�20. (86)

Averaging (86) over the phases θ1 and ϕ1 gives

〈(�1/�0)2〉 =

(
1 +

τ 2
∗
4

)
. (87)

If you are suspicious of the argument above, then you might prefer to align
the initial material element at an arbitrary angle, say ξ0 = �0(cosχ, sinχ),
and first average over χ. The result is the same.

Because each J (n) is independent of the earlier J ’s the average growth
of �2 is

〈(�n/�0)2〉 =

(
1 +

τ 2
∗
4

)n

. (88)

Using t = nτ∗, (88) can be written as

〈(�n/�0)2〉1/2 = eγ2t , γ2 ≡
1

2τ∗
ln

(
1 +

τ 2
∗
4

)
. (89)

Aside from notional differences, γ2 above is identical to (7).
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Figure 8: The nondimensional stretching exponent γ2/β in (90) as a function of
βτ for various values of q. If q = 1/2, then detW is zero identically and γ2 → 0 as
τ → ∞. When q is slightly less than 1/2, and τ is sufficiently large, the occasional
hyperbolic points can make a large contribution to the stretching exponent γ2.

Problem 4.1. Suppose that σn and ζn are identical and independently distributed random
variables, equal to β with probability q, −β with probability q, or zero with probability
1 − 2q. With this prescription there is a hyperbolic point in In, as in the middle panel
of figure 7, with probability 2q(1 − 2q). Calculate γ2 and discuss the dependence on the
parameters β, τ and q.

Solution. Enumerating and averaging over the nine possible pairs (σn, ζn) gives

γ2 =
1
2τ

ln
{
1 + 2q2β2τ2 + 2q(1 − 2q) (coshβτ − 1)

}
. (90)

Figure 8 shows the nondimensional exponent γ2/β as a function of βτ for various values of
q. From figure 8 we conclude that while instantaneous hyperbolic points are not essential
for exponential stretching, they do help, especially if the correlation time τ is long.

Problem 4.2. Using the σ-ζ model, calculate γp in the Kraichnan limit.
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5 Amplification of concentration gradients

In this section we discuss the amplification of ∇c which occurs when a passive
scalar is advected by a random flow.

Back in (27) we noted that the quantity ξ ·∇c satisfies the conservation
equation

D

Dt
(ξ ·∇c) = 0. (91)

Equation (91) enables us to use our earlier results concerning the stretching
of material elements to analyze gradient amplification. In fact, using (91),
we can obtain ∇c from ξ. The first step is to construct a basis by considering
the following initial value problem:

Dξk

Dt
= (ξk ·∇)u, with IC’s ξ1(x, 0) = x̂, ξ2(x, 0) = ŷ, (92)

where the unit vectors of the coordinate system are x̂, ŷ, ẑ. As the fluid
moves, the parallelogram spanned by ξ1 and ξ2 will deform. But because u
is incompressible, the area of the parallelogram is constant and so

ξ1 × ξ2 = ẑ, (for all t). (93)

If we can solve (92) for ξ1, then we can use (91) and (93) to calculate ξ2 and
∇c.

An example

As an example of this procedure, suppose that the initial condition is c(x, 0) =
y. Then it follows from (91) that:

ξ1 ·∇c = 0 and ξ2 ·∇c = 1 (for all t). (94)

Using (93) and (94) we see that

∇c = ẑ × ξ1. (95)

Thus, in this example, once we calculate ξ1 we obtain ∇c as a bonus.
Figure 9 displays the numerical solution for c and |∇c| after 6 iterations

of the renovating wave model. The initial condition is c(x, 0) = y, so that
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Figure 9: Numerical solution of the renovating wave model with τ = 2. The initial
condition is c(x, y, 0) = y. Already, at t = 6τ , |∇c| is greatly amplified in some
regions.
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Figure 10: A numerical solution of the renovating wave model with τ = 1. The
initial condition is c(x, y, 0) = y. The plots show the values of c and |∇c| along the
slice x = 0. After 20 iterations, |∇c| has developed strong spatial intermittency.
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∇c(x, 0) = ŷ; the decorrelation time is τ = 2. The field in figure 9 is obtained
using a 256 × 256 grid. To find c at the grid point x at time t = nτ , one
iterates the renovating wave model backwards in time till the initial location
(a, b) is determined, and then c(x, t) = b. In parallel with this backwards
iteration, ξ(x, nτ) is computed by matrix multiplication of the J (n) defined
in (83), and then ∇c is given by (95).

An important feature of stirring is the development of intermittency in the
concentration gradient, |∇c|. In figure 10 the development of intermittency
is illustrated, again using the renovating wave model. After 20 iterations
there are “hotspots” in which large values of |∇c| are concentrated. Without
diffusion, the gradient of c condenses onto a fractal set as the number of
iterations increases (Városi, Antonsen & Ott 1991).

The filamentation transition

Discuss the interesting paper by Neufeld, López and Haynes (1999)....

6 Three dimensional incompressible flow

Can we generalize the σ-ζ model to three-dimensions, or are we limited to
special cases, such as the Batchelor and Kraichnan limits? The first step is to
construct at 3×3 matrix W analogous to (69). The matrix has 9 components,
but because the trace is zero only eight of these are independent. Two of the
eight components are equivalent to rotations in three dimensional space, and
the remaining six are the principal strains (σ1, σ2, σ3) and the components of
the vorticity, (ζ1, ζ2, ζ3). In other words, we can represent an arbitrary W as

W =
1

2
R−1





σ1 0 0

0 σ2 0
0 0 σ3


 +


 0 −ζ3 ζ2

ζ3 0 −ζ1
−ζ2 ζ1 0





R (96)

where R(θ1, θ2, θ3) is a random three-dimensional rotation matrix. Notice
that the constraint σ1 + σ2 + σ3 = 0 can be enforced by representing the σ’s
as

σ1 = ν2 − ν3 , σ2 = ν3 − ν1 , σ3 = ν1 − ν2 . (97)
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Some useful properties of the representation in (96) are ∇ × u = [ζ1, ζ2, ζ3]
and

u·∇ × u =
1

2
[σ1ζ1x + σ2ζ2y + σ3ζ3z] . (98)

Are there three-dimensional generalizations of the trace formulas? Some
incomplete results. Invoking the Cayley-Hamilton theorem we know that

W 3 − 1

2
tr (W 2)W − det(W )I = 0 , (99)

where

det(W ) = (ν1 − ν2)(ζ
2
3 − ν2

3) + (ν2 − ν3)(ζ
2
1 − ν2

1) + (ν3 − ν1)(ζ
2
2 − ν2

2) ,
(100)

and4

tr (W 2) = 2(ν1ν2 + ν2ν3 + ν1ν3 − ν2
1 − ν2

2 − ν2
3) . (101)

We can obtain a pretty compact expression for J (t) = exp(tW ) by guessing
that this exponential has the form

J = A(t)I + B(t)W + C(t)W 2 . (102)

The using method of undetermined coefficients on J̇ = WJ shows that

Ȧ = det(W )C , Ḃ = A +
1

2
tr (W 2)C , Ċ = B . (103)

All we really need tr (J TJ )....
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