π -computer

How to use FX10 supercomputer @Kobe University

Yohei Miyake, Hideyuki Usui, Koji Morishita Kobe University

2015/8/17

1

Outline

About FX10 supercomputer at Kobe university

- System overview
- How to use
 - Login
 - Compile
 - Execute

FX10 at Kobe university (π-computer)

- Fujitsu PRIMEHPC FX10
 - SPARC64[™] IXfx processor x 96 node
 - Total peak performance: 20.2 TFLOPS
 - Total main memory: 3 TByte
- Node specifications (in comparison with K-Computer)

	FX10 (SPARC64 [™] IXfx)	K (SPARC64™ VIIIfx)
Number of cores	16	8
L1 cache (core)	32 KB(D)/32 KB(I)	32 KB(D)/32 KB(I)
L2 cache (shared)	12 MB	6 MB
Clock frequency	1.65 GHz	2.0 GHz
Peak performance	211.2 GFlops	128 GFlops
Memory capacity	32 GB	16 GB
U Simulation Summer School 2	.015	2015/8/

17

How to login π -computer

Using public key authentication

Procedures (see subsequent slides for details)

- 1. Generate a public/private key pair
 - \rightarrow Using PuTTYgen
- 2. Register the public key at π -computer
- 3. Login to π -computer
 - \rightarrow Using PuTTY

Login server name: pi.ircpi.kobe-u.ac.jp

Generate a key pair

- Run <u>PuTTYgen</u>
- Generate by following procedures

1. Click "generate"

2. Move mouse pointer

3. Enter passphrase

😴 PuTTY Key Gen	erator		×		
<u>File K</u> ey Con <u>v</u> ersion	to OpenSSH authorized l	eurs file:			
Sah res AAAAB3NxaG1 yo2EAAAABJQ AAAQEAv9MIPj2dxwHz3ciyAodWS JIT60Ij6I5b47LMxdDD 91AM06H7KS UJ7JdbiDKPI1 u5 verk865Xaspxo22 WhjEMRinGLKCjsXiMDj32D7288,201 kg Q88n87h9pBiNxMRbc33kmsdm/2yM0u5 viseM251i pBKbq5RyssFxaQrm/5syVKYEnRX OKmPPT/muTl6f/MAb30/ShyPayIr1474:2/19H7F6PTY21 JKKH56V#CA6J65M8.4+hppPMGI					
Key fingerprint: Key <u>o</u> omment:	ssh-rsa 2048 9b:c9:b8:1	d:ee:46:24:ff :20:0e:57:	81 teate6td8t6a		
Kernpassphrase: Confirm pass,	****				
Actions					
Generate a public/priva	te keypair		Generate		
Load an existing private	key file		Load		
Save the generated ke	v (Save p <u>u</u> blic key	Save private key		
Parameters					
Type of key to generate OSSH-1 (RSA)	e:	⊙ss⊦	H-2 DSA		
Number of <u>b</u> its in a gen	erated key:		2048		

Save the key pair

Create your account & register the public key

 This task is processed by the system administrator of π-computer. Please wait for completion.

Login to π -computer

- Run <u>PuTTY</u>
- 1. <u>Enter the host name</u> **pi.ircpi.kobe-u.ac.jp**

2. <u>Select [Connection]-[SSH]-[Auth]</u> <u>in the left menu</u>

3. <u>Set your private key</u>

Login to π -computer (cntd.)

- Login prompt
 - If a security alert dialog appears, then click "yes"

1.	Enter your login ID	g ² pińcpi.коре-u.ac.jp = PuTTY login as: morishita	
		Autherticating with public key "rsa-key sorranita" Passphrase for key "rsa-key-moris-i @":	
2.	Enter your passphrase Note that entered characters aren't		
	displayed		
			*

How to compile/run your programs

Compiler: use Fujitsu Technical Computing Languages

Program run: use batch queueing system

Kobe-Brown Summer School 2014

10

Compilers

Serial program

C++ : C++

: Fortran C: C

Compilers

C++ : C++ F : Fortran C : C

F

C++

F

Open-MP program

- \$ fccpx -Kopenmp sample.c
- \$ FCCpx -Kopenmp sample.cpp
- MPI-OpenMP hybrid program
 - \$ mpifrtpx -Kopenmp sample.f90
 - \$ mpifccpx -Kopenmp sample.c
 - \$ mpiFCCpx -Kopenmp sample.cpp C++

13

Job execution (serial program)

- Make the job script
 - single_job.sh:

Submit a job

\$ pjsub single_job.sh

Job execution (Flat-MPI program)

- Make the job script
 - mpi_job.sh:

```
#!/bin/sh
#PJM -L "rscgrp=small"
#PJM -L "node=2"
#PJM --mpi "proc=32"
#PJM -L "elapse=10:00"
#PJM -j
mpiexec -n 32 ./a.out
```


←Execute "a.out" by MPI

Submit a job

\$ pjsub mpi_job.sh

Job execution (Open-MP program)

- Make the job script
 - omp_job.sh:

```
#!/bin/sh
#PJM -L "rscgrp=small"
#PJM -L "node=1"
#PJM -L "elapse=10:00"
#PJM -j
export OMP_NUM_THREADS=16
./a.out
16 CPU-cores
16 CPU-cores
```

Submit a job

\$ pjsub omp_job.sh

1 node consists of

Job execution (MPI-OMP hybrid program)

- Make the job script
 - hybrid_job.sh:
 - #!/bin/sh
 #PJM -L "rscgrp=small"
 "PJM -L "upped"
 - #PJM -L "node=2"
 - #PJM --mpi "proc=4"
 - #PJM -L "elapse=10:00"
 #PJM -j
 - export OMP_NUM_THREADS=8
 mpiexec -n 4 ./a.out

In case of using

4 proc. × 8 thr. = 32 CPU-cores (requesting 2-node resource)

← Resource group name
← # of requested nodes

← # of MPI processes

Elapsed time limit (hh:mm:ss)

← # of Open-MP threads

←Execute "a.out" by MPI

- Submit a job
 - \$ pjsub hybrid_job.sh

Job control

Displaying job states

\$ pjstat

"-v" option: displaying detailed information

\$ pjstat -v

Deleting a job

\$ pjdel [JOB_ID]

- [JOB_ID] is displayed by "pjstat" commond
- ex.) Deleting the job that [JOB_ID] is 12345

\$ <u>pjdel</u> 12345

Referring to job execution results

- At the end of a job, following files are output to the current directory
 - Standard output file: [JOB_NAME].o[JOB_ID]
 - Standard error output file: [JOB_NAME].e[JOB_ID]
 - [JOB_NAME] is the same as the file name of the job script
 - If we set "#PJM -j" option in the job script, then the standard error output is merged into the standard output file

Resource group

There are three resource groups

Resource group	Available num. of nodes	Max. elapsed time	Available term
small	1 ~ 12	10 minutes	Everyday
medium	1~48	24 hours	Weekday [Mon. 9 am – Fri. 9 pm (JST)]
large	48 ~ 84	12 hours	Weekend [Fri. 9 pm – Mon. 9 am (JST)]

 Please specify an appropriate resource group, which meets with your job size.

Practice

 You try to compile and execute the programs that you have been making in this school